Series

Definition.

Given a sequence, $\left\{a_{n}\right\}_{n=1}^{\infty}$, the associated (infinite) series is the ordered sum

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots
$$

Examples.
$\left\{a_{n}\right\}=\left\{\frac{1}{2^{n}}\right\}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}$

$\left\{a_{n}\right\}=\left\{3, \frac{1}{10}, \frac{4}{10^{2}}, \frac{1}{10^{3}}, \frac{5}{10^{4}}, \ldots\right\}$

Definition.

Given a series, $\sum_{n=1}^{\infty} a_{n}$, the sequence of partial sums, $\left\{s_{k}\right\}$, is defined for each k as

Example.

$$
s_{k}=\sum_{n=1}^{k} a_{n}=a_{1}+a_{2}+\cdots+a_{k}
$$

$$
\sum_{n=1}^{\infty} a_{n}=3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\cdots
$$

Definition.
Given a series, $\sum_{n=1}^{\infty} a_{n}$, let s_{n} denote its nth partial sum.
If $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=S$ exists as a real number, then $\sum_{n=1}^{\infty} a_{n}$ is called convergent and we write $\sum_{n=1}^{\infty} a_{n}=S$.

Example.

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\cdots \\
\left\{s_{n}\right\} & =\{3,3.1,3.14,3.141,3.1415, \ldots\}
\end{aligned}
$$

Definition.

Given a series, $\sum_{n=1}^{\infty} a_{n}$, let s_{n} denote its nth partial sum.
If $\left\{s_{n}\right\}$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is called divergent.
Example.

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} n=1+2+3+4+\cdots
$$

Definition.

A geometric series is a series that has the form

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots+a r^{n-1}+a r^{n}+\cdots \quad a \neq 0
$$

Observe.

$$
\frac{n+1 \text { term of series }}{n \text { term of series }}=\frac{a r^{n}}{a r^{n-1}}=r
$$

Example.

Theorem.
Given a geometric series $\sum_{n=1}^{\infty} a r^{n-1}$

- If $\underbrace{|r|<1}_{-1<r<1}$, then $\sum_{n=1}^{\infty} a r^{n-1}$ converges and $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$
- If $\underbrace{|r| \geq 1}_{-1 \leq r \text { or } r \geq 1}$, then $\sum_{n=1}^{\infty} a r^{n-1}$ diverges

Example.

Example.
Is the series $\sum_{n=1}^{\infty} 2^{2 n} 3^{1-n}$ convergent or divergent?

Example.
Write the number $2 . \overline{16}=2.161616 \ldots$ as a ratio of integers.

Proof of Theorem.

Given a geometric series $\sum_{n=1}^{\infty} a r^{n-1}, a \neq 0$

- If $r=1$, then $\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=1}^{\infty} a \not \Longrightarrow s_{n}=n a \quad \lim _{n \rightarrow \infty} s_{n}=\infty$

$$
\Longrightarrow \text { series diverges }
$$

- If $r \neq 1$, then $s_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}$

$$
\begin{aligned}
-r s_{n} & =a r+a r^{2}+\cdots+a r^{n-1}+a r^{n} \\
s_{n}-r s_{n} & =a-a r^{n} \\
s_{n} & =\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a}{1-r}-\frac{a}{1-r} r^{n}
\end{aligned}
$$

$>$ If $r>1$ or $r \leq-1$, then $\lim _{n \rightarrow \infty} s_{n}$ diverges \Longrightarrow series diverges
$>$ If $-1<r<1$, then $\lim _{n \rightarrow \infty} s_{n}=\frac{a}{1-r} \Longrightarrow$ series converges

Index Shift.
 $$
\sum_{n=2}^{\infty} \frac{n+5}{2}=\sum_{i=0}^{\infty} ?
$$

Example.

Calculate $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots$ for $|x|<1$

Definition.

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation
Example.
Calculate $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=S$

Conditional Statements.

Theorem.

$$
\sum_{n=1}^{\infty} a_{n} \text { is convergent } \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=0
$$

Example.

Divergence Test. (Contapositive of above Theorem)
$\left(\begin{array}{c}\lim _{n \rightarrow \infty} a_{n} \text { does not exist } \\ \text { or } \\ \lim _{n \rightarrow \infty} a_{n} \neq 0\end{array}\right] \Longrightarrow \sum_{n=1}^{\infty} a_{n}$ is divergent
Example.
If $\left\{a_{n}\right\}=\{1,1,1, \ldots\}$ is $\sum_{n=1}^{\infty} a_{n}$ convergent or divergent?

Remark.
The following is NOT TRUE. (Converse of previous theorem)

$$
\lim _{n \rightarrow \infty} a_{n}=0 \Longrightarrow \sum_{n=1}^{\infty} a_{n} \text { is convergent }
$$

Famous Counterexample.
The harmonic series is $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{1}{n}$

Theorem.

- $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n} \quad c$ constant
- $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n}$

Examples.

