
On the Solution to the Nonlinear Resource
Allocation Problem Using Variable Fixing and

Interior-Point Methods

James Rohal

Advisor: Dr. Stephen Wright

Contents

List of Figures ii

List of Algorithms ii

1 Introduction 1

2 Methods 2
2.1 Lagrange Multiplier Methods . 2
2.2 Pegging Methods . 3
2.3 Interior-Point Methods . 5

2.3.1 Optimality Conditions . 5
2.3.2 Interior-Point Algorithm . 6

3 Indicators 8
3.1 Definition And Properties . 9
3.2 Tapia Indicator . 10

4 Numerical Tests 10
4.1 Applications . 10

4.1.1 Stratified Sampling . 11
4.1.2 Manufacturing Capacity Planning . 11
4.1.3 Quadratic Knapsack . 12

4.2 Implementation . 12
4.3 Timings . 12
4.4 Future Work . 14

References 14

i

List of Figures

1 Illustration of the breakpoint search method. 3
2 Sparsity pattern of the Jacobian JF. Nonzero entries are colored blue while

zero entries are white. 8
3 Timing plots for both a closed-form and numerical solution to the pegging

subproblem. The horizontal axis represents one of the twenty timings and
the vertical axis is the timing in seconds. 13

List of Algorithms

1 Pegging Algorithm for Problems Satisfying Case 1 4
2 Interior-Point Method Framework . 7

ii

1 Introduction

We will be studying the nonlinear resource allocation problem (P):

(P) min f(ξ) :=

n∑
i=1

fi(ξi)

st g(ξ) :=

n∑
i=1

gi(ξi) 6 M

`i 6 ξi 6 ui,

where f : Rn → Rn and g : Rn → Rn are separable, convex, differentiable functions and
`i and ui are finite bounds on our decision variables. We assume that the feasible region
is nonempty and bounded and that each fi and gi are monotone. In practice, we may
replace the inequality constraint by an equality constraint. This is motivated by the idea
that we expect the explicit constraint to be active at an optimal solution [7]. In many
applications, the decision variables are integral, but we only concern ourselves with the
continuous relaxation where the decision variables can be real valued. The techniques
we describe below can be extended to use methods like branch and bound, dynamic
programming, or converting to a 0,1 knapsack problem, each of which solve the integer
version of our problem

Since this problem is applicable to many fields such as economics, engineering, statis-
tics, and manufacturing, researchers have studied the problem extensively and published
hundreds of articles with the first being in 1953 [6]. A survey paper by Michael Patriksson
[7] attempts to give a broad view of work done on problem (P) by describing its history
and applications and describing the most common techniques used to solve it. Among
these techniques include Lagrange multiplier methods and pegging methods which we
discuss in sections and 2.1 and 2.2. The applications we will be looking at come from
the fields of statistics, manufacturing, and quadratic programming. By making use of the
pegging methods of Bretthauer and Shetty [2] and using a relatively new set of methods
called interior-point methods, we have created a way to solve (P) quickly that is compet-
itive with many of the methods mentioned in Patriksson’s paper.

In the next section we describe three methods that were previously used to solve (P)

and the theory behind them. The third chapter concerns itself with indicators, which is a
class of functions used for identifying active variables. The implementation of the various
algorithms using MATLAB are discussed in the last section along with a description of a
new method that is competitive (in speed) with previous methods. We also present our
numerical results for the various methods and mention future work that can be done.

Throughout this paper we use the convention that a superscript ∗ denotes an optimal
value and bold symbols refer to vectors.

1

2 Methods

2.1 Lagrange Multiplier Methods

Among the oldest of the methods used to solve problem (P), Lagrange multiplier meth-
ods find the optimal value of the Lagrange multiplier ρ > 0 associated with the explicit
constraint. We obtain the following optimality conditions an optimal value ξ∗ must sat-
isfy [7]:

∇f(ξ∗) + ρ∗∇g(ξ∗) = 0
g(ξ∗) −M 6 0

`i 6 ξ∗ 6 ui

ρ∗(g(ξ∗) −M) = 0
ρ∗ > 0.

Furthermore ξ∗ must satisfy the tangent criterion

ξ∗i = `i, if f ′i (ξ
∗
i) > −ρ∗g ′i (ξ

∗
i)

ξ∗i = ui, if f ′i (ξ
∗
i) 6 −ρ∗g ′i (ξ

∗
i)

`i < ξ
∗
i < ui, if f ′i (ξ

∗
i) = −ρ∗g ′i (ξ

∗
i) .

(2.1)

The above conditions are the optimality conditions for the minimization of the concave
piecewise linear Lagrange dual function of a single variable ρ,

q(ρ) := −Mρ+
∑

min
`i6ξi6ui

{
fi(ξi) + ρgi(ξi)

}
.

There is no guarantee that the derivative q ′ exists, so to find an optimal value ρ∗ one can
use a bisection search or a breakpoint search. A breakpoint is a value for ρ that satisfies
the tangent criterion 2.1 which can be seen in Figure 1(a).

A rudimentary breakpoint search method first places the breakpoints in some list
{ρ1, . . . , ρN} (where N 6 2n since there may be times when ρ satisfies more than one con-
dition of 2.1). Finding ρ∗ then amounts to finding an index i∗ where q ′(ρi∗) = 0 (hence we
are done) or two indices j and k where q ′+(ρj) > 0 and q ′−(ρk) < 0 and then performing
an interpolation between these two values so that ρ∗ ∈ (ρj, ρk) and 0 ∈ ∂q(ρ∗). This can
be seen in Figure 1(b).

It is possible to speed up the search for this optimal breakpoint by first sorting the
list of breakpoints. Although the sorting operation usually takes O(n logn) time, using a
median search takes O(n) time and can significantly speed up the process of finding ρ∗.

Although we didn’t explicitly test breakpoint methods during this project, it should
be considered in any future work on this subject.

2

q

∂q 0

Breakpoints

(a) Breakpoints labeled on the subdifferential ∂q.

q

∂q 0

q′+ (ρ∗) ≥ 0

q′− (ρ∗) ≤ 0

0 ∈ ∂q (ρ∗)

(b) An optimal ρ∗ will satisfy the condition that
0 ∈ ∂q(ρ∗).

Figure 1: Illustration of the breakpoint search method.

2.2 Pegging Methods

Pegging methods find an optimal solution by solving relaxations of (P) where the finite
bound constraints on ξ are removed. It is a recursive algorithm because at each stage
some variables receive their optimal value and are thus removed from the problem, cre-
ating a smaller subproblem to solve. The original pegging method was motivated by
work done by Bitran and Hax [1] and Robinson et al. [8] and described succinctly in the
paper by Bretthauer and Shetty [2]. In our computational tests, we found that the pegging
method is among the fastest ways of solving the problem at hand as long as a closed-form
solution can be found to the subproblem.

First, let ρ denote the Lagrange multiplier for
∑n
i=1 gi(ξi) 6 M. We assume that the

optimal value for ρ is positive, otherwise we could check for an optimal solution quickly.
Furthermore, we assume that a solution ξi(ρ) exists to the nonlinear equation f ′i+ρg

′
i = 0

as a function of ρ. This gives us two major cases to consider.

Case 1: gi(ξi) decreasing in ξi for all i and ξi(ρ) is increasing in ρ for all i.

Case 2: gi(ξi) increasing in ξi for all i and ξi(ρ) is decreasing in ρ for all i.

Let ξ∗ denote the optimal solution to (P). We refer to a variable as being pegged if ξ∗i
is fixed at its upper or lower bound, ui or `i, respectively. Let Lk denote the index set of
variables pegged to their lower bound andUk denote the index set of variables pegged to
their upper bound up to iteration k of the pegging algorithm. We let Ik denote the index

3

set of unpegged variables at iteration k. The pegging algorithm for solving (P) when Case
1 is satisfied is as follows [2].

Algorithm 1: Pegging Algorithm for Problems Satisfying Case 1

Set I1 = {1, . . . ,n} , L1 = ∅ , U1 = ∅ .
For k = 1 to n

Solve the current subproblem (Pk) and let ξki for all i ∈ Ik denote its optimal solution
where

(Pk) min
∑
i∈Ik

fi(ξi) +
∑
i∈Lk

fi(`i) +
∑
i∈Uk

fi(ui)

st
∑
i∈Ik

gi(ξi) +
∑
i∈Lk

gi(`i) +
∑
i∈Uk

gi(ui) = M.

Identify the variables in the subproblem solution that do not satisfy their bounds:

Sk =
{
i ∈ Ik : xki < `i

}
and Bk =

{
i ∈ Ik : xki > ui

}
.

I f Sk ∪ Bk = ∅ then End For .
Calculate total lower and upper infeasbilities:

∇ =
∑
i∈Sk

[
gi (`i) − gi

(
ξki
)]

and ∆ =
∑
i∈Bk

[
gi
(
ξki
)

− gi (ui)
]

.

I f ∇ > ∆ then
Set Ik+1 = Ik \ Bk , Uk+1 = Uk + Bk , Lk+1 = Lk .

Else
Set Ik+1 = Ik \ Sk , Lk+1 = Lk + Sk , Uk+1 = Uk .

End I f
End For
Return optimal solution:

ξ∗i =


`i if i ∈ Lk
ui if i ∈ Uk
ξki if i ∈ Ik.

Since at least one variable is pegged at each iteration, the method terminates in a finite
number of steps with a complexity at most O(n2). The speed of this algorithm relies on
whether we can find a closed form solution for (Pk) in terms of the multiplier ρ. We
show in our numerical tests that when a basic numerical solver is used, then the pegging
method is quite slow. A natural extension of this algorithm would be a method to give a
better determination of the pegged variables. We use the idea of indicators in section 3 to
accomplish this.

4

2.3 Interior-Point Methods

Interior-point methods are iterative methods that generate a series of iterates that lie in
the interior of the feasible region. It is possible to avoid the boundary by introducing
barrier functions that create a “penalty” for getting too close. Primal-dual interior-point
methods (of which we are concerned with in this paper) apply Newton methods to the
optimality conditions so that we satisfy a strict inequality at each iteration. To do so,
each iteration must modify the search directions and step lengths so that our within a
reasonable neighborhood of the central path. The central path (whose existence is proved
in [10]) is an arc of strictly feasible points along which we take steps to get closer to a
primal-dual solution.

When working with interior-point methods, it is sometimes difficult to find a strictly
feasible initial solution to start the method. To avoid this difficulty one could embed
(P) into a larger program for which such a solution exists or modify the interior-point
algorithm to not require a strictly feasible starting point [10]. Another difficulty with
interior-point methods is that fast convergence requires problem specific tuning. For ex-
ample, using a method like fmincon in MATLAB converges extremely slowly since it has
not been optimized to solve problem (P).

2.3.1 Optimality Conditions

The benefit of working with the problem (P) is its nice structure. Recall that we have made
the assumption that our explicit constraint holds as equality. We begin by introducing
slack variables x ∈ Rn and s ∈ Rn for the upper and lower bound, respectively, to form a
nonnegative system (P ′) which is equivalent to (P).

(P ′) min
n∑
i=1

fi(xi + `i)

st
n∑
i=1

gi(xi + `i) = M

ui − `i = si + xi
xi > 0, si > 0.

The optimality (Karush-Kuhn-Tucker) conditions for (P ′) are as follows:

∇f(x+ `) + ρ∇g(x+ `) − λ+ µ = 0 (2.2)
n∑
i=1

gi(xi + `i) = M (2.3)

ui − `i = si + xi (2.4)
λixi = 0 (2.5)
µisi = 0 (2.6)

xi > 0, si > 0,µi > 0, λi > 0 (2.7)

5

where λ and µ are the Lagrange multipliers for the lower and upper bound, respectively.
The interior-point method we use is a path-following algorithm which perturbs the com-
plementary slackness conditions. We thus modify the conditions (2.5) - (2.7) above to
reflect this:

∇f(x+ `) + ρ∇g(x+ `) − λ+ µ = 0 (2.8)
n∑
i=1

gi(xi + `i) = M (2.9)

ui − `i = si + xi (2.10)
λixi = τ (2.11)
µisi = τ (2.12)

xi > 0, si > 0,µi > 0, λi > 0. (2.13)

We can then define the central path as an arc of strictly feasible points where the comple-
mentary slackness conditions have the same value (τ) for all indices. An interior-point
method then travels along the central path and reduces τ ↓ 0. The central path is benefi-
cial since it guides the iterative procedure along a path avoiding spurious solutions and
reduces the complementary slackness conditions to zero at a steady rate.

2.3.2 Interior-Point Algorithm

The equations from the KKT conditions (2.8) - (2.13) form a nearly linear system, so it is
reasonable to attempt to solve (P) using a Newton-like algorithm (and exploit the struc-
ture to improve efficiency). We begin by restating the optimality conditions in the form:

F(x,λ, s,µ, ρ) =


∇f(x+ `) + ρ∇g(x+ `) − λ+ µ

λ · x− τ

µ · s− τ

x+ s+ `− u∑n
i=1 gi(xi − `i) −M

 =


0
0
0
0
0

 . (2.14)

A pure Newton step has a tendency to take us to a point where the positivity condition
(x,λ, s,µ, ρ) > 0 fails to hold. By biasing the search direction to point towards the non-
negative orthant we can take longer steps while still being a feasible point. We introduce
a centering parameter σ ∈ [0, 1] and a simple duality measure β defined by

β =
xTλ− µTs

n
.

If we wish to improve centrality; that is, move closer to the central path, we can let σ = 1
in which case we do not move much closer to a solution, but instead setup for a large step
for the next iteration. On the other extreme, we can let σ = 0 which would give us a pure
Newton step which is sometimes described as the affine-scaling direction. In practice, it
is best to let σ ∈ (0, 1) vary during the iterations.

6

Replacing τ by the product σβ in (2.14), then the Newton system we need to solve is

JF(x,λ, s,µ, ρ)


∆x

∆λ

∆s

∆µ

∆ρ

 = −F(x,λ, s,µ, ρ)

where JF(x,λ, s,µ, ρ) is the Jacobian of F(x,λ, s,µ, ρ).
Interior-point algorithms generate iterates zk = (xk,λk, sk,µk, ρk) that give us strictly

feasible points. To maintain strict feasibility, it is not always permissable to take a full
Newton step, so instead we perform a line search in the Newton direction to find a new
iterate

zk+1 = zk + αk∆zk

where αk ∈ (0, 1] is a line search parameter. Since the parameter αk tends to be small
when we perform this line search, it is often necessary to modify Newton’s method to
allow for larger steps. We must also guarantee that the steps we take lead us to a solu-
tion. By staying close to the central path, the directions aim closer to the interior of the
strictly feasible set which allows us to move further for each iteration. Furthermore, bar-
rier functions are created to prevent the components of zk from coming to close to the
boundary of the feasible set, which would distort our solution and prevent our algorithm
from progressing.

We now lay out a general framework for an interior-point method with iterates zk =

(xk,λk, sk,µk, ρk).

Algorithm 2: Interior-Point Method Framework

Find a strictly feasible point z0.
For k = 1, 2, . . . do

Solve the Newton system JF
(
zk
)
∆zk = −F

(
zk
)

where F is defined as in (2.14) .
Set zk+1 = zk + αk∆zkwhere αk is chosen so zk+1 > 0.

End For

We can guarantee the interior-point method will terminate after a finite number of iter-
ations by checking residuals or using a method of Ye that attempts to jump to an exact
primal-dual solution [10].

One special feature of problem (P) is the structure of the Jacobian JF. We find

JF(x,λ, s,µ, ρ) =


diag

(
∂2f
∂ξ2

i
+ ρi

∂2g
∂ξ2

i

)
−I 0 I

(
∂g
∂ξi

)T
diag(λi) diag(xi) 0 0 0

0 0 diag(µi) diag(si) 0
I 0 I 0 0(
∂g
∂ξi

)
0 0 0 0


where I is the n×n identity matrix and ξi = xi+`i. We may visualize the sparsity pattern
of JF in Figure 2(a) and can permute the rows and columns to form a new matrix as seen

7

in Figure 2(b). The permuted matrix can be inverted using a Schur complement which is
more efficient than finding the inverse of the unpermuted Jacobian.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 88(a) Unmodified JF.
0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 88(b) JFwith rows and columns permuted.

Figure 2: Sparsity pattern of the Jacobian JF. Nonzero entries are colored blue while zero entries are white.

3 Indicators

A technique for improving the speed of certain algorithms would be to identify active
constraints early on in an iterative process. The problem of identifying active constraints
is equivalent to asking which of the constraints xi > 0 and si > 0 are active at ξ∗. We let

L∗ = {i : x∗i = 0, 1 6 i 6 n}

U∗ = {i : s∗i = 0, 1 6 i 6 n}

be the set of indices of variables that are zero at the solution ξ∗ for the lower and upper
bound, respectively. For our discussion below, we let Z∗ denote any one of L∗ or U∗

exclusively.
By identifying these zero variables early on, we may form a smaller dimension sub-

problem to solve, providing a significant savings in computational work. Furthermore,
removing these variables from the original problem may also improve the conditioning
of the Jacobian [3].

8

3.1 Definition And Properties

Recall that zk = (xk,λk, sk,µk, ρk) and the interior-point method is an iterative procedure
of the form

zk+1 = zk + αk∆zk.

where αk is the step length. Let
(
zk,∆zk

)
be a sequence generated by the interior-point

method. We define an indicator function I to be a function which assigns to
(
zk,∆zk

)
an

n-vector of extended reals I
(
zk,∆zk

)
that satisfies the property that if zk → z∗, then for

i = 1, . . . ,n

lim
k→∞ IZ

∗

i =

{
0, if i ∈ Z∗

θi, if i /∈ Z∗

where mini θi > 0. It is desirable that any indicator IZ∗ have the following ideal properties
[4]:

1. the sharp separation property,

min θi >> 0; i /∈ Z∗

2. the uniform separation property,

θi = θ; i /∈ Z∗

for some nonzero constant θ,

3. the indicator is inexpensive to compute,

4. the indicator sequence
{
I
(
zk,∆zk

)}
converges to its limit vaster than zk converges

to z∗,

5. the indicator gives reliable information early on in the iterative process.

An effective indicator need not satisfy all the properties listed above; however, the sharp
separation property is of extreme importance. This is because the indicator function
should be able to distinguish between zero variables and those variables with very small
values. Due to this, using variables as indicators (by setting variables with very small
absolute value to zero) will not work well in our application.

3.2 Tapia Indicator

Tapia [4] suggested using the quotient of successive Lagrange multipliers (λ, µ) and the
quotient of successive slack variables (x, s) for indicator functions. The lower bound

9

indicators corresponding to the primal and dual variables, IL∗p and IL∗d , respectively, are
defined as

IL
∗

p

(
zk,∆zk

)
=
xk+1

xk

IL
∗

d

(
zk,∆zk

)
= 1 −

λk+1

λk
.

We similarly define the upper bound indicators as

IU
∗

p

(
zk,∆zk

)
=
sk+1

sk

IU
∗

d

(
zk,∆zk

)
= 1 −

µk+1

µk
.

Assuming that
{
zk
}

converges to a strictly feasible solution z∗, then it can be shown that
for i = 1, . . . ,n

lim
k→∞

xk+1
i

xki
−→
{

0, if i ∈ L∗

1, if i /∈ L∗
(3.1)

lim
k→∞

(
1 −

λk+1
i

λki

)
−→
{

0, if i ∈ L∗

1, if i /∈ L∗
(3.2)

lim
k→∞

sk+1
i

ski
−→
{

0, if i ∈ U∗

1, if i /∈ U∗
(3.3)

lim
k→∞

(
1 −

µk+1
i

µki

)
−→
{

0, if i ∈ U∗

1, if i /∈ U∗
(3.4)

The benefit of the Tapia indicators is that they satisfy all the ideal properties as long as the
interior-point method we use will allow the sequence

{
I
(
zk,∆zk

)}
to converge superlin-

early.

4 Numerical Tests

4.1 Applications

We consider three specific problems from Bretthauer and Shetty’s pegging paper [2]. Each
of these problems has a closed-form solution to the subproblem (Pk) from section 2.2.
Choosing these problems allows us to compare our times to those of Bretthauer and
Shetty. A larger list of problems can be found in the survey paper from Patrikkson [7].
Our three applications include: (1) stratified sampling, (2) manufacturing capacity plan-
ning, and (3) a quadratic knapsack problem. As is the case in most real world problems,
the decision variable is integral.

10

4.1.1 Stratified Sampling

Stratified sampling requires estimating a population mean µ with a value y by minimiz-
ing the variance of the estimate subject to a linear sampling budget constraint. A pop-
ulation is split into n strata and ξi is the sample size for stratum i. If bi is the cost of
surveying one unit in stratum i and M is the sampling budget available, then we may
represent this as a nonlinear resource allocation problem:

(SAMP) min V(y)

st
∑

biξi 6 M

`i 6 ξi 6 ui

ξi is integral.

In regards to pegging, (SAMP) lies under Case 2.

4.1.2 Manufacturing Capacity Planning

Many manufacturing systems can be characterized by the machines or workstations in
the network. Typically this is a network of queues where each node in the network is a
workstation. The manufacturing capacity planning problem involves the minimum cost
selection of the capacity at each workstation subject to an upper limit on the total dollar
value of work-in-process in the system [2]. It can be formulated as follows:

(MCP) min
∑

ciξi

st
∑

bi

(
αi

ξi − αi

)
6 M

`i 6 ξi 6 ui

ξi is integral

where n is the number of stations in the network, ξi the service rate at station i, ci the
cost per unit of capacity at station i, bi the average dollar work-in-process value per job
at station i, αi the arrival rate at station i, and M an upper limit on total work-in-process
allowed in the network. In regards to pegging, (MCP) lies under Case 1.

11

4.1.3 Quadratic Knapsack

A standard optimization problem which requires minimizing a quadratic objective func-
tion subject to a linear capacity constraint.

(QP) min
∑(

1
2
piξ

2
i − aiξi

)
st
∑

biξi 6 M

`i 6 ξi 6 ui

ξi is integral.

In regards to pegging, (QP) lies under Case 2.

4.2 Implementation

We implemented several different algorithms using the methods discussed earlier. All of
these methods were coded in MATLAB.

PEG: A pegging algorithm adapted from Bretthauer and Shetty [2] with optimizations
from the paper by Kiwiel [5].

IPM-PC: A linearly convergent predictor-correct interior-point method with an optimized
Newton system solver as discussed in section 2.3.2.

IPMQ: A quadratically convergent interior-point method from Sun and Zhao [9] with an
optimized Newton system solver.

IPMQ-PEG: A synthesis of the IPMQ and PEG methods using Tapia indicators from
section 3.2.

The method of interest to us is IPMQ-PEG. Since problem (P) can be solved using a
pegging method PEG, it was only natural to try to identify which variables are pegged
early on in an iterative process like an interior-point method. To identify these variables,
we attempted to use Tapia indicators.

The IPMQ-PEG method checks the Tapia indicators every iteration and then decides
whether the iterates

{
I
(
zk,∆zk

)}
have converged. Once they converged, the method

populates the index sets L1 and U1 (from Algorithm 1) with the respective variables
pegged to the lower and upper bounds, then runs PEG to find a solution.

4.3 Timings

Our numerical tests showed that PEG is among the fastest methods to solve (P) as long as
a closed-form solution exists to the subproblem (Pk) which can be seen in Figure 3(a). The

12

new implementation IPMQ-PEG is competitive with the existing interior-point methods
and its timings correlate strongly with PEG.

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

IPMQ

PEG

IPMQ−PEG

IPM−PC

(a) A closed-form solution to the pegging subproblem exists and is
used in PEG.

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

IPM−PC

IPMQ−PEG

PEG

IPMQ

(b) A numerical solver used to solve the pegging subproblem
slows down any method using PEG.

Figure 3: Timing plots for both a closed-form and numerical solution to the pegging subproblem. The
horizontal axis represents one of the twenty timings and the vertical axis is the timing in seconds.

13

If such a numerical solution does not exist, then we see in Figure 3(b) that PEG and
IPMQ-PEG are slower than the other two interior-point methods. Both PEG and IPMQ-
PEG can be significantly sped up using more efficient numerical subsolvers to solve (Pk).

The timings in Figure 3(a) and Figure 3(b) are for small problems with n = 40. We
found the timings were extremely similar for any of the three problem applications we
discussed in section 4.1. For larger dimensional problems (like n = 5000) we find that
IPMQ, PEG, and IPMQ-PEG require the same number of iterations as smaller dimen-
sional problems but the amount of work scales linearly with n.

4.4 Future Work

Among the methods studied, we only briefly mentioned breakpoint search methods in
section 2.1. Any future timings should be compared to an efficient breakpoint search
method such as one done by Kiwiel [5]. To speed up the algorithms already implemented,
there are still some small optimizations from Kiwiel’s paper that have yet to be placed in
the existing code.

So far we have only studied three major nonlinear resource allocation problems where
each of these problems had a closed-form solution to the pegging subproblem (Pk). The
existence of such a solution shows that PEG dominated all of the other methods imple-
mented. In the future we should consider problems that only have numerical solutions to
the subproblem. Furthermore, the three problems studied had almost half the variables
pegged within the first two iterations of PEG. It should be possible to find applications of
problem (P) in which this does not happen or find a specific example where convergence
of the pegging algorithm is slower than IPMQ-PEG.

The paper by El-Bakry, Tapia, and Zhang [4] concerned itself with indicators for interior-
point methods. Although numerous indicator functions were mentioned, we only consid-
ered the Tapia indicators because they were easy to implement. We should try using other
indicators such as the Tapia-Zhang indicators to see if they identify active constraints
faster than in our current implementation.

References

[1] Bitran GR, Hax AC. Disaggregation and Resource Allocation Using Convex Knapsack
Problems with Bounded Variables. Management Science, Vol. 27. (1981), pp. 431-41.

[2] Bretthauer K, Shetty B. The Nonlinear Resource Allocation Problem. Operations Re-
search, Vol. 43, No. 4. (1995), pp. 670-83.

[3] El-Bakry AS. On the Role of Indicators in Identifying Zero Variables in Linear Program-
ming. Doctoral Thesis, Rice University. (1991).

[4] El-Bakry AS, Tapia RA, Zhang Y. A study of indicators for identifying zero variables in
interior-point methods. SIAM Review, Vol. 36 No. 1. (March 1994), pp. 45-72.

14

[5] Kiwiel K. Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem.
Journal of Optimization Theory and Applications, Vol. 136, No. 3. (2008), pp. 445-58.

[6] Koopman, BO. The optimum distribution of effort. Operations Research, No. 1. (1953),
pp. 52-63.

[7] Patriksson M. A survey on the continuous nonlinear resource allocation problem. Euro-
pean Journal Operational Research, Vol. 185, No. 1. (2008), pp. 1-46.

[8] Robinson AG, Jiang N, Lerme CS. On the continuous quadratic knapsack problem. Math-
ematical Programming, Vol. 55. (1992), pp. 99-108.

[9] Sun J, Zhao G. A quadratically convergent polynomial long-step algorithm for a class of
nonlinear monotone complementarity problems. Optimization, Vol. 48, No. 4. (2000), pp.
453-75.

[10] Wright, SJ. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA, 1997.

15

	List of Figures
	List of Algorithms
	Introduction
	Methods
	Lagrange Multiplier Methods
	Pegging Methods
	Interior-Point Methods
	Optimality Conditions
	Interior-Point Algorithm

	Indicators
	Definition And Properties
	Tapia Indicator

	Numerical Tests
	Applications
	Stratified Sampling
	Manufacturing Capacity Planning
	Quadratic Knapsack

	Implementation
	Timings
	Future Work

	References

