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Nonlinear Resource Allocation Problem

ξ ∈ Rn is our decision variable.

(P ) min f(ξ) :=
∑

fi(ξi)

st g(ξ) :=
∑

gi(ξi) ≤M

`i ≤ ξi ≤ ui,

f : Rn → Rn and g : Rn → Rn are separable, convex, and
differentiable functions. We assume WLOG that fi and gi are
monotone.
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Nonlinear Resource Allocation Problem

We expect the constraint to be active at an optimal solution.

(P ) min
∑

fi(ξi)

st
∑

gi(ξi) = M

`i ≤ ξi ≤ ui.
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Stratified Sampling

Estimating a population mean with a value by minimizing the
variance of the estimate subject to a linear sampling budget
constraint.

(SAMP) min
∑ di

ξi
− di
Ni

st
∑

biξi ≤M

`i ≤ ξi ≤ ui

ξi is integral.
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Quadratic Knapsack

Minimize a quadratic objective function subject to a linear
capacity constraint.

(QP) min
∑(

1
2
piξ

2
i − aiξi

)
st

∑
biξi ≤M

`i ≤ ξi ≤ ui

ξi is integral.
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Manufacturing Capacity Planning

Minimum cost selection of the service rate (or capacity) at each
work station subject to an upper limit on the total dollar value of
work-in-process in the system.

(MCP) min
∑

ciξi

st
∑

bi

(
αi

ξi − αi

)
≤M

`i ≤ ξi ≤ ui

ξi is integral.
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Previous Work by Others

A survey of the continuous nonlinear resource allocation
problem by Michael Patriksson [4].

Lagrange multiplier methods.
Pegging methods.

Kiwiel [3] speeds up pegging algorithm of Bretthauer &
Shetty [1].
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Optimality Conditions

An optimal solution ξ∗ with corresponding multiplier ρ∗, satisfies
the KKT conditions:

Lagrange Multiplier Equation: ∇f (ξ∗) + ρ∗∇g (ξ∗) = 0.
Primal Feasibility: g (ξ∗)−M ≤ 0 and `i ≤ ξ∗i ≤ ui.
Dual Feasibility: ρ∗ ≥ 0.
Complementary Slackness: ρ∗ (g (ξ∗)−M) = 0.
Tangent Criterion:

ξ∗i = `i, if f ′i (ξ∗i ) ≥ −ρ∗g′i (ξ∗i )

ξ∗i = ui, if f ′i (ξ∗i ) ≤ −ρ∗g′i (ξ∗i )

`i < ξ∗i < ui, if f ′i (ξ∗i ) = −ρ∗g′i (ξ∗i ) .
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Lagrange Multiplier Algorithms

Maximize the Lagrangian dual function (for given ρ ≥ 0),

q(ρ) := −Mρ+
∑

min
`i≤ξi≤ui

{
fi(ξi) + ρgi(ξi)

}
,

i.e., maximize a concave piecewise linear function of ρ. We
can find ρ∗ using

Bisection search (iterative).
Breakpoint search.
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Breakpoint Search

q

∂q 0

Breakpoints
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Breakpoint Search

q

∂q 0

q′+ (ρ∗) ≥ 0

q′− (ρ∗) ≤ 0

0 ∈ ∂q (ρ∗)
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Pegging Algorithms

Definition
A variable ξi is pegged if it is fixed at its upper bound ui or lower
bound `i.

Solve relaxations of (P ) where the bound constraints are
relaxed.
At each iteration at least one variable is fixed, so
complexity is at most O(n2).
Efficient algorithm if each subproblem can be solved in
terms of the multiplier.
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Pegging Framework

1 (Initialization) Lk = ∅, Uk = ∅.
For k = 1 to n do:

2 (Solve the subproblem). Let ξk denote the optimal solution
(we assume one exists) to:(
P k
)

min
∑

fi(ξi)

st
∑

gi(ξi) = M, where ξi =

{
ui if i ∈ Uk
`i if i ∈ Lk.

3
(
Identify variables in

(
P k
)

that do not satisfy their bounds
)

smallk =
{
i : ξki < `i

}
and bigk =

{
i : ui < ξki

}
If smallk ∪ bigk = ∅, then an optimal solution has been
found.
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Pegging Framework (Continued)

4 (Calculuate total lower and upper infeasibilities).

∇ =
∑

i∈smallk

[
gi(`i)− gi

(
ξki

)]
∆ =

∑
i∈bigk

[
gi

(
ξki

)
− gi(ui)

]
.

5 (Pegging) If ∇ ≥ ∆ then fix variables in bigk to upper
bounds Else fix variables in smallk to lower bounds.
Update Uk+1, and Lk+1 appropriately. Goto step 2.
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Interior Point Methods

Travel through the interior to find a solution.
A “barrier” or “penalty” function prevents the algorithm from
approaching the boundary.
Can use a primal-dual path following algorithm: iterates
follow an arc of strictly feasible points (by staying within a
neighborhood of it).
Difficulties

Finding a good intial solution to start our algorithm.
Fast convergence requires problem specific tuning.
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Forming a Nonnegative System (Restating the
Optimality Conditions)

Introducing slacks x and s for the lower bound and upper
bounds, respectively, forms a nonnegative system. We may
assume through preprocessing that our constraint holds as
equality.

(P ′) min
∑

fi(xi + `i)

st
∑

gi(xi + `i) = M

ui − `i = si + xi
xi ≥ 0, si ≥ 0.
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Optimality Conditions

The KKT conditions for the nonnegative system (P ′). The
variables λ and µ are the Lagrange multipliers for the lower
bound and upper bound, respectively.

Lagrange Multiplier Equation:

∇f(x+ `) + ρ∇g(x+ `)− λ+ µ = 0.

Primal Feasibility:∑
gi(xi + `i) = M and ui − `i = si + xi.

Complementary Slackness: λixi = 0 and µisi = 0.
Nonnegativity: xi ≥ 0, si ≥ 0, µi ≥ 0, λi ≥ 0, ρ ≥ 0.
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Optimality Conditions and Central Path

The KKT conditions for the nonnegative system (P ′). The
variables λ and µ are the Lagrange multipliers for the lower
bound and upper bound, respectively.

Lagrange Multiplier Equation:

∇f(x+ `) + ρ∇g(x+ `)− λ+ µ = 0.

Primal Feasibility:∑
gi(xi + `i) = M and ui − `i = si + xi.

Complementary Slackness: λixi = τ and µisi = τ .
Nonnegativity: xi > 0, si > 0, µi > 0, λi > 0, ρ > 0.
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Central Path

Definition
The central path is an arc of strictly feasible points where the
complementary slackness conditions have the same value (τ)
for all indices.

Guides iterative procedure along a path avoiding spurious
solutions.
Reduces complementary slackness condition to zero at a
steady rate.
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IPM Framework

Let zk =
(
xk,λk, sk,µk, ρk

)
.

1 Find a strictly feasible point z0.
For k = 1, 2, . . . do the following.

2 Solve the Newton system JF
(
zk
)

∆zk = −F
(
zk
)

where

F (z) = F (x,λ, s,µ, ρ) :=


∇f(x+ `) + ρ∇g(x+ `)− λ+ µ

λ · x− τ
µ · s− τ

x+ s+ `− u∑
gi(xi + `i)−M

 .
3 Set zk+1 = zk + αk∆zk where αk is chosen so zk+1 > 0.
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Newton System

JF (z) = JF (x,λ, s,µ, ρ) =
diag

(
∂2f
∂ξ2i

+ ρi
∂2g
∂ξ2i

)
−I 0 I

(
∂g
∂ξi

)T
diag(λi) diag(xi) 0 0 0

0 0 diag(µi) diag(si) 0
I 0 I 0 0(
∂g
∂ξi

)
0 0 0 0


A pure Newton step has a tendency to take us to a point
where the positivity condition (x,λ, s,µ, ρ) > 0 fails to hold.
Counteract this by introducing a centering parameter
σ ∈ [0, 1] and a simple duality measure β. Replace τ by the
product σβ.
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Solving the Newton System

Partition the Jacobian into blocks and find the inverse
using the Schur complement.
Gives a nice block structure.
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Refinements

Reduce dimension of the problem.
Pegging implies there is a natural means for identifying
active constraints.
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Indicators

Recall zk =
(
xk,λk, sk,µk, ρk

)
.

Definition
An indicator is a function I that identifies constraints that are
active at a solution of a constrained optimization problem.

An indicator function I assigns to zk an n-vector of extended
reals and satisfies the property that if zk → z∗, then ∀i

lim
k→∞

Ii

(
zk
)

=

{
θi if i is inactive

0 if i is active,

for some θi satisfying mini θi > 0.
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Ideal Properties of an Indicator Function

1 Sharp separation property:

min
inactive i

θi >> 0.

2 Uniform separation property:

θi = θ,∀ inactive i,

for some nonzero constant θ.
3 Inexpensive to compute.
4
{
I
(
zk
)}

converges faster to its limit than
{
zk
}

converges
to z∗.

5 Reliable early on in the iterative process.
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Indicator Functions

Variables as indicators.
Do not satisfy sharp or uniform separation.
Useful information is not given soon enough.

Tapia indicator: Use quotient of successive Lagrange
multipliers and the quotient of successive slack variables.
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Tapia Indicator

Lower bound indicator:

I`i

(
zk
)

=
xk+1

xk
+

(
1− λ

k+1

λk

)
.

Upper bound indicator:

Iui

(
zk
)

=
sk+1

sk
+
(

1− µ
k+1

µk

)
.

Both satisfy

lim
k→∞

Ii

(
zk
)

=

{
2, if i is inactive

0, if i is active.
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Algorithms

PEG: Pegging method based on work by Bretthauer &
Shetty [1] and later improved by Kiwiel [3].
IPMPC vs. IPMQ: Two types of interior point methods.

IPMPC: Linearly convergent predictor-corrector method.
IPMQ: Quadratically convergent method based on work by
Sun & Zhao [5].

IPMQ-PEG: Algorithm using IPMQ above with pegging as
subroutine.
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Small Problems (n = 40)

Run PEG (s) IPMQ-PEG (s)
1 0.0007 0.0026
2 0.0007 0.0037
3 0.0007 0.0025
...

...
...

18 0.0005 0.0024
19 0.0006 0.0025
20 0.0006 0.0036

Run IPM-PC (s) IPMQ (s)
1 0.0111 0.0061
2 0.0146 0.0056
3 0.0122 0.0074
...

...
...

18 0.0141 0.0059
19 0.0074 0.0058
20 0.0140 0.0061

Subproblem with closed-form solution.
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Small Problems (n = 40)

Run PEG (s) IPMQ-PEG (s)
1 0.0388 0.0409
2 0.0400 0.0431
3 0.0385 0.0404
...

...
...

18 0.0453 0.0337
19 0.0313 0.0333
20 0.0406 0.0436

Run IPM-PC (s) IPMQ (s)
1 0.0111 0.0061
2 0.0146 0.0056
3 0.0122 0.0074
...

...
...

18 0.0141 0.0059
19 0.0074 0.0058
20 0.0140 0.0061

Subproblem with numerical solution.

0 2 4 6 8 10 12 14 16 18 20
0

0.01
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Large Problems

Solution found in same number of iterations.
PEG, IPMQ, IPMQ-PEG scale linearly with n.
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Future Work

Compare to breakpoint search method.
Micro-optimizations.
Consider applications without closed-form subproblem
solutions.
Indicators.

Identifying active variables sooner (less pegging iterations).
Tapia-Zhang.
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