On the Solution to the Nonlinear Resource
Allocation Problem Using Variable Fixing and
Interior Point Methods

James Rohal
rohaljj@muohio.edu

Miami University

May 29, 2009

Presented in fulfilment for the Masters in Science in Mathematics at Miami University in Oxford, OH under the

supervision of Dr. Stephen Wright (vrightse@muohio.edu).



Outline

0 Resource Allocation Problem

e Structural Properties & Earlier Algorithms
e Interior Point Methods

Q Indicators

e Numerical Tests

G Future Work

@ Bibliography



Problem

Nonlinear Resource Allocation Problem

& € R™ is our decision variable.
(P)  min f(&):=)_ fil&)
st g(&) = ai&) <M

b < & < g,
f:R® - R™and g: R® — R" are separable, convex, and

differentiable functions. We assume WLOG that f; and g; are
monotone.




Problem

Nonlinear Resource Allocation Problem

We expect the constraint to be active at an optimal solution.
(P)  min Y fi(&)
st Zgl(&) =M

l; <& <.



Problem

Stratified Sampling

Estimating a population mean with a value by minimizing the
variance of the estimate subject to a linear sampling budget
constraint.
(SAMP) min Z @ _ 4
st > bi& <M
b <& <y

& is integral.



Problem

Quadratic Knapsack

Minimize a quadratic objective function subject to a linear
capacity constraint.

(QP)  min ) <;pif¢2 - aifi)
st > bi& <M
<& <wy

& is integral.



Problem

Manufacturing Capacity Planning

Minimum cost selection of the service rate (or capacity) at each
work station subject to an upper limit on the total dollar value of
work-in-process in the system.

(MCP) min Z ci&i

st ) b (&- ila,) <M

l; <& <y

&; is integral.



Problem

Previous Work by Others

@ A survey of the continuous nonlinear resource allocation
problem by Michael Patriksson [4].

e Lagrange multiplier methods.
e Pegging methods.
@ Kiwiel [3] speeds up pegging algorithm of Bretthauer &
Shetty [1].



Structure & Algorithms

Optimality Conditions

An optimal solution £* with corresponding multiplier p*, satisfies
the KKT conditions:

@ Lagrange Multiplier Equation: Vf (£*) + p*Vg (

@ Primal Feasibility: g (§*) — M <0 and b < &
@ Dual Feasibility: p* > 0.

@ Complementary Slackness: p* (g (§*) — M) = 0.
@ Tangent Criterion:

& =i, i [ (&) = —p"gi (&)
& =i, i fi (&) < —p*g; (&)

b <& <, 3 fI(E) = —p"g; (&)



Structure & Algorithms

Lagrange Multiplier Algorithms

@ Maximize the Lagrangian dual function (for given p > 0),
alp) = —=Mp+3 min {fi(&)+pgi(&)},

i.e., maximize a concave piecewise linear function of p. We
can find p* using

e Bisection search (iterative).

e Breakpoint search.



Structure & Algorithms

Breakpoint Search

c—>0 Breakpoints
G—Qj
dq 0
(CaunS)
c—©O



Structure & Algorithms

Breakpoint Search




Structure & Algorithms

Pegging Algorithms

Definition
A variable &; is pegged if it is fixed at its upper bound u; or lower
bound /;.

@ Solve relaxations of (P) where the bound constraints are
relaxed.

@ At each iteration at least one variable is fixed, so
complexity is at most O(n?).

@ Efficient algorithm if each subproblem can be solved in
terms of the multiplier.



Structure & Algorithms

Pegging Framework

@ (Initialization) L* = 0, U* = 0.
For k =1 to n do:

@ (Solve the subproblem). Let £* denote the optimal solution
(we assume one exists) to:

(Pk) min Zfz(fz)
st Zw(&) =M, where § = {

U ifie Uk;
b ifiely.

© (Identify variables in (P¥) that do not satisfy their bounds)
small® = {z ek < Zi} and bigh = {z tuy < §Zk}

If small® U big® = (), then an optimal solution has been
found.



Structure & Algorithms

Pegging Framework (Continued)

© (Calculuate total lower and upper infeasibilities).

V=Y |aw-a(d)] A=Y |e(d) gt

icsmall® i€bigk

@ (Pegging) If V > A then fix variables in big;, to upper
bounds Else fix variables in smally, to lower bounds.
Update U*+1, and L**! appropriately. Goto step 2.



IPM

Interior Point Methods

@ Travel through the interior to find a solution.

@ A “barrier” or “penalty” function prevents the algorithm from
approaching the boundary.

@ Can use a primal-dual path following algorithm: iterates
follow an arc of strictly feasible points (by staying within a
neighborhood of it).

o Difficulties

e Finding a good intial solution to start our algorithm.
e Fast convergence requires problem specific tuning.



IPM

Forming a Nonnegative System (Restating the
Optimality Conditions)

Introducing slacks « and s for the lower bound and upper
bounds, respectively, forms a nonnegative system. We may
assume through preprocessing that our constraint holds as
equality.

(P) min Y fi(wi+ )

st Zgz(xl + El) =M

uj — by = s; +
x; 20,8, > 0.



IPM

Optimality Conditions

The KKT conditions for the nonnegative system (P’). The
variables A and u are the Lagrange multipliers for the lower
bound and upper bound, respectively.

@ Lagrange Multiplier Equation:
Vf(x+2€+pVglx+£) — A+ pn=0.
@ Primal Feasibility:
dgimi+t)=M and  u;i— =5+

@ Complementary Slackness: \;z; = 0 and p;s; = 0.
@ Nonnegativity: x; > 0,5, >0, u; >0, \; >0, p > 0.



IPM

Optimality Conditions and Central Path

The KKT conditions for the nonnegative system (P’). The
variables A and u are the Lagrange multipliers for the lower
bound and upper bound, respectively.

@ Lagrange Multiplier Equation:
Vf(x+2€+pVglx+£) — A+ pn=0.
@ Primal Feasibility:
dgimi+t)=M and  u;i— =5+

@ Complementary Slackness: \;x; = 7 and p;s; = 7.
@ Nonnegativity: z; > 0, s; > 0, i; > 0, A\; > 0, p > 0.



Central Path

Definition

The central path is an arc of strictly feasible points where the
complementary slackness conditions have the same value (7)
for all indices.

@ Guides iterative procedure along a path avoiding spurious
solutions.

@ Reduces complementary slackness condition to zero at a
steady rate.



IPM Framework

Let zF = (a:k,}\k,sk,uk,pk).
@ Find a strictly feasible point z°.
For k. =1,2,... do the following.
@ Solve the Newton system JF (z*) Az* = —F (2*) where

Vi@+4£) +pVglx+£€) —A+p

Ax—T
F(z)=F(x,\,s,u,p) := pw-Ss—T
r+s+L€—u

> gilw +4;) — M

© Set 2kt = 2k + ok AzF where o* is chosen so zFt1 > 0.



Newton System

JF(z) = JF(x,\, s, b, p) =

- T_
. 92 f 9
diag (852 + p; 352> -1 0 I (85)
diag(\;) diag(z;) 0 0 0

0 0 diag(pi) diag(s;) 0

1 0 I 0 0

99
I (%) 0 0 0 0

@ A pure Newton step has a tendency to take us to a point
where the positivity condition (x, A, s, u, p) > 0 fails to hold.
@ Counteract this by introducing a centering parameter
o € [0,1] and a simple duality measure . Replace T by the
product o 3.



IPM

Solving the Newton System

@ Partition the Jacobian into blocks and find the inverse
using the Schur complement.

@ Gives a nice block structure.




Refinements

@ Reduce dimension of the problem.

@ Pegging implies there is a natural means for identifying
active constraints.



Indicators

Indicators

Recall zF = (wk,Ak,sk,pk,pk).

Definition

An indicator is a function I that identifies constraints that are
active at a solution of a constrained optimization problem.

An indicator function I assigns to z* an n-vector of extended
reals and satisfies the property that if z¥ — z*, then Vi

i T ( k) {92- if ¢ is inactive
m I4; | =2 =

k—o0 0 if ¢ is active,

for some 6; satisfying min; 6; > 0.



Indicators

Ideal Properties of an Indicator Function

@ Sharp separation property:

min 6; >> 0.

inactive
© Uniform separation property:
0; = 0,V inactive 1,

for some nonzero constant 6.
© Inexpensive to compute.

Q {I(z")} converges faster to its limit than {z*} converges
to z*.
©Q Reliable early on in the iterative process.



Indicators

Indicator Functions

@ Variables as indicators.
e Do not satisfy sharp or uniform separation.
e Useful information is not given soon enough.
@ Tapia indicator: Use quotient of successive Lagrange
multipliers and the quotient of successive slack variables.



Indicators

Tapia Indicator

@ Lower bound indicator:

k+1 k+1
Y AN xr A
Ii<z)— — +<1— N )
@ Upper bound indicator:

k+1 k+1

s u
I ( ’f) = 1— .
i \# Sk + L

@ Both satisfy

k—oo 0, if 7 is active.

lim I ( k) {2, if ¢ is inactive
m [; | =2 =



Numerical Tests

Algorithms

@ PEG: Pegging method based on work by Bretthauer &
Shetty [1] and later improved by Kiwiel [3].
@ IPMPC vs. IPMQ: Two types of interior point methods.
e IPMPC: Linearly convergent predictor-corrector method.
e IPMQ: Quadratically convergent method based on work by
Sun & Zhao [5].
@ IPMQ-PEG: Algorithm using IPMQ above with pegging as
subroutine.



Numerical Tests

Small Problems (n = 40)

Run|PEG (s) IPMQ-PEG (s) Subproblem with closed-form solution.
1 [0.0007  0.0026
2 [0.0007  0.0037 tots
3 [0.0007  0.0025
: : 0.016 /\ IPM-PC 7
18 | 0.0005  0.0024 o014l N\ d o
19 /0.0006  0.0025 N \ [ N
20 [0.0006  0.0036 ooz [ | [ R A
\ [ A /\\ [ Ay
0.01f ‘ “ \ \ / \ / \\ /j \ //,
Run|IPM-PC (s) IPMQ (s) ol Vo \ \\/ |
1] 00111  0.0061 ' \ [
2 | 0.0146 0.0056 0.006] J\ﬁ PMQ
3 | 00122 0.0074 \ﬁ
0.004F IPMQ PEG
18| 0.0141  0.0059 0.002 o 1
19| 0.0074  0.0058
20 | 0.0140  0.0061 % 2 4 &

1 1 1 L
10 12 14 16 18 20



Small Problems (n = 40)

PEG (s) IPMQ-PEG (s)

0.0409
0.0431
0.0404

0.0337
0.0333
0.0436

Run|IPM-PC (s) IPMQ (s)

Run
1 |0.0388
2 |0.0400
3 |0.0385
18 | 0.0453
19 | 0.0313
20 | 0.0406
1 0.0111
2 0.0146
3 0.0122
18 0.0141
19 0.0074
20 | 0.0140

0.0061
0.0056
0.0074

0.0059
0.0058
0.0061

Subproblem with numerical solution.

0.06

0.05

0.04f

0.03r

0.021

0.01f

Numerical Tests

IPMQ-PEG




Numerical Tests

Large Problems

@ Solution found in same number of iterations.
e PEG, IPMQ, IPMQ-PEG scale linearly with n.



Future Work

Future Work

@ Compare to breakpoint search method.

@ Micro-optimizations.

@ Consider applications without closed-form subproblem
solutions.

@ Indicators.

e Identifying active variables sooner (less pegging iterations).
e Tapia-Zhang.
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