

On the Solution to the Nonlinear Resource Allocation Problem Using Variable Fixing and Interior Point Methods

James Rohal rohaljj@muohio.edu

Miami University

May 29, 2009

Presented in fulfilment for the Masters in Science in Mathematics at Miami University in Oxford, OH under the

supervision of Dr. Stephen Wright (wrightse@muchio.edu).

- 2 Structural Properties & Earlier Algorithms
- Interior Point Methods
- Indicators
- 5 Numerical Tests
- 6 Future Work

Nonlinear Resource Allocation Problem

 $oldsymbol{\xi} \in \mathbb{R}^n$ is our decision variable.

$$\begin{array}{ll} (P) & \min & f(\boldsymbol{\xi}) := \sum f_i(\xi_i) \\ & \mathrm{st} & g(\boldsymbol{\xi}) := \sum g_i(\xi_i) \le M \\ & \ell_i < \xi_i < u_i, \end{array}$$

 $f: \mathbb{R}^n \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^n$ are separable, convex, and differentiable functions. We assume WLOG that f_i and g_i are monotone.

Nonlinear Resource Allocation Problem

We expect the constraint to be active at an optimal solution.

(P) min
$$\sum f_i(\xi_i)$$

st $\sum g_i(\xi_i) = M$
 $\ell_i \le \xi_i \le u_i.$

Estimating a population mean with a value by minimizing the variance of the estimate subject to a linear sampling budget constraint.

(SAMP) min
$$\sum \frac{d_i}{\xi_i} - \frac{d_i}{N_i}$$

st $\sum b_i \xi_i \le M$
 $\ell_i \le \xi_i \le u_i$

 ξ_i is integral.

Minimize a quadratic objective function subject to a linear capacity constraint.

(QP) min
$$\sum \left(\frac{1}{2}p_i\xi_i^2 - a_i\xi_i\right)$$

st $\sum b_i\xi_i \le M$
 $\ell_i \le \xi_i \le u_i$

 ξ_i is integral.

Manufacturing Capacity Planning

Minimum cost selection of the service rate (or capacity) at each work station subject to an upper limit on the total dollar value of work-in-process in the system.

(MCP) min
$$\sum c_i \xi_i$$

st $\sum b_i \left(\frac{\alpha_i}{\xi_i - \alpha_i}\right) \le M$
 $\ell_i \le \xi_i \le u_i$

 ξ_i is integral.

Previous Work by Others

- A survey of the continuous nonlinear resource allocation problem by Michael Patriksson [4].
 - Lagrange multiplier methods.
 - Pegging methods.
- Kiwiel [3] speeds up pegging algorithm of Bretthauer & Shetty [1].

Optimality Conditions

An optimal solution ξ^* with corresponding multiplier ρ^* , satisfies the KKT conditions:

- Lagrange Multiplier Equation: $\nabla f(\boldsymbol{\xi}^*) + \rho^* \nabla g(\boldsymbol{\xi}^*) = 0.$
- Primal Feasibility: $g(\boldsymbol{\xi}^*) M \leq 0$ and $\ell_i \leq \xi_i^* \leq u_i$.
- Dual Feasibility: $\rho^* \ge 0$.
- Complementary Slackness: $\rho^* \left(g\left(\boldsymbol{\xi}^* \right) M \right) = 0.$
- Tangent Criterion:

$$\begin{aligned} \xi_{i}^{*} &= \ell_{i}, & \text{if } f_{i}'\left(\xi_{i}^{*}\right) \geq -\rho^{*}g_{i}'\left(\xi_{i}^{*}\right) \\ \xi_{i}^{*} &= u_{i}, & \text{if } f_{i}'\left(\xi_{i}^{*}\right) \leq -\rho^{*}g_{i}'\left(\xi_{i}^{*}\right) \\ \ell_{i} &< \xi_{i}^{*} < u_{i}, & \text{if } f_{i}'\left(\xi_{i}^{*}\right) = -\rho^{*}g_{i}'\left(\xi_{i}^{*}\right). \end{aligned}$$

Lagrange Multiplier Algorithms

• Maximize the Lagrangian dual function (for given $\rho \ge 0$),

$$q(\rho) := -M\rho + \sum \min_{\ell_i \le \xi_i \le u_i} \{ f_i(\xi_i) + \rho g_i(\xi_i) \},$$

i.e., maximize a concave piecewise linear function of $\rho.$ We can find ρ^* using

- Bisection search (iterative).
- Breakpoint search.

Breakpoint Search

Breakpoint Search

Pegging Algorithms

Definition

A variable ξ_i is pegged if it is fixed at its upper bound u_i or lower bound ℓ_i .

- Solve relaxations of (*P*) where the bound constraints are relaxed.
- At each iteration at least one variable is fixed, so complexity is at most $O(n^2)$.
- Efficient algorithm if each subproblem can be solved in terms of the multiplier.

Pegging Framework

• (Initialization)
$$L^k = \emptyset$$
, $U^k = \emptyset$.

For k = 1 to n do:

 (Solve the subproblem). Let ξ^k denote the optimal solution (we assume one exists) to:

(Identify variables in (P^k) that do not satisfy their bounds)

$$\mathrm{small}^k = \left\{ i: \xi_i^k < \ell_i \right\} \quad \mathrm{and} \quad \mathrm{big}^k = \left\{ i: u_i < \xi_i^k \right\}$$

If $\operatorname{small}^k \cup \operatorname{big}^k = \emptyset$, then an optimal solution has been found.

Pegging Framework (Continued)

(Calculuate total lower and upper infeasibilities).

$$\nabla = \sum_{i \in \text{small}^k} \left[g_i(\ell_i) - g_i\left(\xi_i^k\right) \right] \qquad \Delta = \sum_{i \in \text{big}^k} \left[g_i\left(\xi_i^k\right) - g_i(u_i) \right].$$

(Pegging) If ∇ ≥ ∆ then fix variables in big_k to upper bounds Else fix variables in small_k to lower bounds. Update U^{k+1}, and L^{k+1} appropriately. Goto step 2.

- Travel through the interior to find a solution.
- A "barrier" or "penalty" function prevents the algorithm from approaching the boundary.
- Can use a primal-dual path following algorithm: iterates follow an arc of strictly feasible points (by staying within a neighborhood of it).
- Difficulties
 - Finding a good intial solution to start our algorithm.
 - Fast convergence requires problem specific tuning.

Forming a Nonnegative System (Restating the Optimality Conditions)

Introducing slacks x and s for the lower bound and upper bounds, respectively, forms a nonnegative system. We may assume through preprocessing that our constraint holds as equality.

$$(P') \quad \min \quad \sum f_i(x_i + \ell_i)$$

st
$$\sum g_i(x_i + \ell_i) = M$$

$$u_i - \ell_i = s_i + x_i$$

$$x_i \ge 0, s_i \ge 0.$$

The KKT conditions for the nonnegative system (P'). The variables λ and μ are the Lagrange multipliers for the lower bound and upper bound, respectively.

• Lagrange Multiplier Equation:

$$\nabla f(\boldsymbol{x} + \boldsymbol{\ell}) + \rho \nabla g(\boldsymbol{x} + \boldsymbol{\ell}) - \boldsymbol{\lambda} + \boldsymbol{\mu} = 0.$$

• Primal Feasibility:

$$\sum g_i(x_i + \ell_i) = M \quad \text{and} \quad u_i - \ell_i = s_i + x_i.$$

- Complementary Slackness: $\lambda_i x_i = 0$ and $\mu_i s_i = 0$.
- Nonnegativity: $x_i \ge 0, s_i \ge 0, \mu_i \ge 0, \lambda_i \ge 0, \rho \ge 0.$

Optimality Conditions and Central Path

The KKT conditions for the nonnegative system (P'). The variables λ and μ are the Lagrange multipliers for the lower bound and upper bound, respectively.

• Lagrange Multiplier Equation:

$$\nabla f(\boldsymbol{x} + \boldsymbol{\ell}) + \rho \nabla g(\boldsymbol{x} + \boldsymbol{\ell}) - \boldsymbol{\lambda} + \boldsymbol{\mu} = 0.$$

• Primal Feasibility:

$$\sum g_i(x_i + \ell_i) = M \quad \text{and} \quad u_i - \ell_i = s_i + x_i.$$

- Complementary Slackness: $\lambda_i x_i = \tau$ and $\mu_i s_i = \tau$.
- Nonnegativity: $x_i > 0$, $s_i > 0$, $\mu_i > 0$, $\lambda_i > 0$, $\rho > 0$.

Indicators

Numerical Tests

Future Work

Bibliography

Central Path

Definition

The central path is an arc of strictly feasible points where the complementary slackness conditions have the same value (τ) for all indices.

- Guides iterative procedure along a path avoiding spurious solutions.
- Reduces complementary slackness condition to zero at a steady rate.

IPM Framework

Let
$$z^k = (x^k, \lambda^k, s^k, \mu^k, \rho^k)$$
.
• Find a strictly feasible point z^0 .

For $k = 1, 2, \ldots$ do the following.

2 Solve the Newton system $JF(\mathbf{z}^k) \Delta \mathbf{z}^k = -F(\mathbf{z}^k)$ where

$$F(\boldsymbol{z}) = F(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}, \boldsymbol{\mu}, \rho) := \begin{bmatrix} \nabla f(\boldsymbol{x} + \boldsymbol{\ell}) + \rho \nabla g(\boldsymbol{x} + \boldsymbol{\ell}) - \boldsymbol{\lambda} + \boldsymbol{\mu} \\ \boldsymbol{\lambda} \cdot \boldsymbol{x} - \tau \\ \boldsymbol{\mu} \cdot \boldsymbol{s} - \tau \\ \boldsymbol{x} + \boldsymbol{s} + \boldsymbol{\ell} - \boldsymbol{u} \\ \sum g_i(x_i + \ell_i) - M \end{bmatrix}$$

3 Set $z^{k+1} = z^k + \alpha^k \Delta z^k$ where α^k is chosen so $z^{k+1} > 0$.

Newton System

$$JF(\boldsymbol{z}) = JF(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}, \boldsymbol{\mu}, \rho) = \begin{bmatrix} \operatorname{diag} \left(\frac{\partial^2 f}{\partial \xi_i^2} + \rho_i \frac{\partial^2 g}{\partial \xi_i^2} \right) & -I & 0 & I & \left(\frac{\partial g}{\partial \xi_i} \right)^T \\ \operatorname{diag}(\lambda_i) & \operatorname{diag}(x_i) & 0 & 0 & 0 \\ 0 & 0 & \operatorname{diag}(\mu_i) & \operatorname{diag}(s_i) & 0 \\ I & 0 & I & 0 & 0 \\ \left(\frac{\partial g}{\partial \xi_i} \right) & 0 & 0 & 0 & 0 \end{bmatrix}$$

- A pure Newton step has a tendency to take us to a point where the positivity condition (*x*, λ, *s*, μ, ρ) > 0 fails to hold.
- Counteract this by introducing a centering parameter $\sigma \in [0, 1]$ and a simple duality measure β . Replace τ by the product $\sigma\beta$.

- Partition the Jacobian into blocks and find the inverse using the Schur complement.
- Gives a nice block structure.

Refinements

- Reduce dimension of the problem.
- Pegging implies there is a natural means for identifying active constraints.

Indicators

Recall
$$\boldsymbol{z}^k = \left(\boldsymbol{x}^k, \boldsymbol{\lambda}^k, \boldsymbol{s}^k, \boldsymbol{\mu}^k, \rho^k
ight).$$

Definition

An indicator is a function *I* that identifies constraints that are active at a solution of a constrained optimization problem.

An indicator function *I* assigns to z^k an *n*-vector of extended reals and satisfies the property that if $z^k \rightarrow z^*$, then $\forall i$

$$\lim_{k \to \infty} I_i\left(\boldsymbol{z}^k\right) = \begin{cases} \theta_i & \text{if } i \text{ is inactive} \\ 0 & \text{if } i \text{ is active,} \end{cases}$$

for some θ_i satisfying $\min_i \theta_i > 0$.

Ideal Properties of an Indicator Function

Sharp separation property:

$$\min_{\text{inactive }i} \theta_i >> 0.$$

Oniform separation property:

$$\theta_i = \theta, \forall \text{ inactive } i,$$

for some nonzero constant θ .

- Inexpensive to compute.
- {I (z^k)} converges faster to its limit than {z^k} converges to z*.
 to z*.
- Seliable early on in the iterative process.

Indicator Functions

- Variables as indicators.
 - Do not satisfy sharp or uniform separation.
 - Useful information is not given soon enough.
- Tapia indicator: Use quotient of successive Lagrange multipliers and the quotient of successive slack variables.

• Lower bound indicator:

$$I_{i}^{\ell}\left(oldsymbol{z}^{k}
ight)=rac{oldsymbol{x}^{k+1}}{oldsymbol{x}^{k}}+\left(1-rac{oldsymbol{\lambda}^{k+1}}{oldsymbol{\lambda}^{k}}
ight).$$

• Upper bound indicator:

$$I_i^u\left(oldsymbol{z}^k
ight) = rac{oldsymbol{s}^{k+1}}{oldsymbol{s}^k} + \left(1 - rac{oldsymbol{\mu}^{k+1}}{oldsymbol{\mu}^k}
ight).$$

Both satisfy

$$\lim_{k \to \infty} I_i\left(\boldsymbol{z}^k\right) = \begin{cases} 2, & \text{if } i \text{ is inactive} \\ 0, & \text{if } i \text{ is active.} \end{cases}$$

- **PEG**: Pegging method based on work by Bretthauer & Shetty [1] and later improved by Kiwiel [3].
- IPMPC vs. IPMQ: Two types of interior point methods.
 - **IPMPC**: Linearly convergent predictor-corrector method.
 - **IPMQ**: Quadratically convergent method based on work by Sun & Zhao [5].
- **IPMQ-PEG**: Algorithm using **IPMQ** above with pegging as subroutine.

Small Problems (n = 40)

Run	PEG (s)	IPMQ-PEG (s)
1	0.0007	0.0026
2	0.0007	0.0037
3	0.0007	0.0025
÷	:	:
18	0.0005	0.0024
19	0.0006	0.0025
20	0.0006	0.0036
Run	IPM-PC (s) IPMQ (s)
1	0.0111	0.0061
2	0.0146	0.0056
3	0.0122	0.0074
:	:	:
18	0.0141	0.0059
10		
19	0.0074	0.0058

Subproblem with closed-form solution.

14 16 18 20

Small Problems (n = 40)

Run	PEG (s)	IPMQ-PEG (s)	Subproblem with numerical solution	۱.
1	0.0388	0.0409	•	
2	0.0400	0.0431		
3	0.0385	0.0404	0.06	
:	:	:		
			0.05	
18	0.0453	0.0337	IPMQ-PEG	
19	0.0313	0.0333		
20	0.0406	0.0436	0.04	7
				1
Dural			0.03- PEG	
Run		S) IPINIQ (S)		
1	0.0111	0.0061		
2	0.0146	0.0056	0.02	
3	0.0122	0.0074	IPM-PC	
:	:	:	0.01	
18	0.0141	0.0059		-
19	0.0074	0.0058	IPMQ	
20	0.0140	0.0061	0 2 4 6 8 10 12 14 1	6

- Solution found in same number of iterations.
- **PEG**, **IPMQ**, **IPMQ-PEG** scale linearly with *n*.

- Compare to breakpoint search method.
- Micro-optimizations.
- Consider applications without closed-form subproblem solutions.
- Indicators.
 - Identifying active variables sooner (less pegging iterations).
 - Tapia-Zhang.

Bibliography

[1] Bretthauer K, Shetty B.

The Nonlinear Resource Allocation Problem. (1995).

[2] El-Bakry AS, Tapia RA, Zhang Y.

A study of indicators for identifying zero variables in interior-point methods. (1994).

[3] Kiwiel K.

Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem. (2008).

[4] Patriksson M.

A survey on the continuous nonlinear resource allocation problem. (2008).

[5] Sun J, Zhao G.

A quadratically convergent polynomial long-step algorithm for A class of nonlinear monotone complementarity problems. (2000).