Non-Homogeneous Second-Order Differential Equations

James Rohal

We are going to use Maple to solve some second-order differential equations. They take the form $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=G(x)$. A non-homogeneous second-order differential equations has $G(x) \neq 0$. We are going to look at a special case where $P(x)=a, Q(x)=b, R(x)=c$ and a, b, c are constants. The given by $y(x)=y_{c}(x)+y_{p}(x)$ where $y_{c}(x)$ is the complementary solution and $y_{p}(x)$ is the particular solution. The example we will be considering is $y^{\prime \prime}+y^{\prime}-6 y=G(x)$. In an earlier worksheet we found that $y_{c}(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}$ by studying the characteristic polynomial. Below we show how to find $y_{p}(x)$ for different $G(x)$.

$G(x)=$ polynomial

If polynomial has degree n, then we guess that $y_{p}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0} x^{0}$ where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are constants.

Suppose $G(x)=x^{2}$. The degree is 2 so we guess $y_{p}(x)=A x^{2}+B x+C$. (It doesn't matter what we call the constants.) Now we use the method of undetermined coefficients. First, we find the derivatives of the particular solution.

$$
\left[\begin{array}{ll}
>\text { yp } & :=A^{*} \mathrm{x}^{\wedge} 2+\mathrm{B}^{*} \mathrm{x}+\mathrm{C} ; \\
\text { yp_prime } & \vdots=\operatorname{diff}(\mathrm{yp}, \mathrm{x}) ; \\
\text { yp_double_prime } & :=\operatorname{diff}(\mathrm{yp}, \mathrm{x} \$ 2) ; \\
& y p:=A x^{2}+B x+C \\
& y p _p r i m e:=2 A x+B \\
& \tag{1.1}\\
& y p _ \text {double_prime }:=2 A
\end{array}\right.
$$

Now we substitute the expressions we found above in to the differential equation.

$$
\left[\begin{array}{c}
>\text { ode }:=\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6^{*} y(x)=x^{\wedge} 2 ; \\
\begin{array}{l}
\text { ode_with_yp }:=\text { eval(ode, }\left\{\operatorname{diff}(y(x), x \$ 2)=y p _\right. \text {double_prime, } \\
\left.\left.\operatorname{diff}(y(x), x)=y p _p r i m e, y(x)=y p\right\}\right) ;
\end{array} \\
\text { ode }:=\frac{d^{2}}{d x^{2}} y(x)+\frac{\mathrm{d}}{\mathrm{~d} x} y(x)-6 y(x)=x^{2}
\end{array}\right.
$$

We then collect common terms.
[> collect(ode_with_yp, x);

$$
\begin{equation*}
-6 A x^{2}+(-6 B+2 A) x+2 A-6 C+B=x^{2} \tag{1.3}
\end{equation*}
$$

If the particular solution is in fact a solution to our ODE, then the coefficients on the LHS must agree with the coefficients on the RHS. This gives us a system of equations to solve.
[> constants :=
solve([

$$
\begin{aligned}
& (-6) * A+(0) * B+(0) * C=1, \\
& (2){ }^{*} A+(-6) * B+(0) * C=0, \\
& (2) * A+(1) * B+(-6) * C=0
\end{aligned}
$$

$$
\begin{align*}
& \{\mathrm{A}, \mathrm{~B}, \mathrm{C}\})^{\prime} ; \\
& \text { constants }:=\left\{A=-\frac{1}{6}, B=-\frac{1}{18}, C=-\frac{7}{108}\right\} \tag{1.4}
\end{align*}
$$

Thus the particular solution is
[> eval(yp, constants);

$$
\begin{equation*}
-\frac{1}{6} x^{2}-\frac{1}{18} x-\frac{7}{108} \tag{1.5}
\end{equation*}
$$

The general solution is then $y(x)=y_{c}(x)+y_{p}(x)=\left(c_{1} e^{2 x}+c_{2} e^{-3 x}\right)+\left(-\frac{7}{108}-\frac{1}{18} x-\frac{1}{6} x^{2}\right)$.
We can verify this using dsolve.
[> dsolve(diff(y(x), $\left.x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=x^{\wedge} 2, y(x)\right) ;$

$$
\begin{equation*}
y(x)=__{-} C 2 \mathrm{e}^{-3 x}+__{-} C 1 \mathrm{e}^{2 x}-\frac{7}{108}-\frac{1}{18} x-\frac{1}{6} x^{2} \tag{1.6}
\end{equation*}
$$

$G(x)=e^{k \cdot x}$
We guess that $y_{p}(x)=A e^{k \cdot x}$ where A is a constant.
Suppose $G(x)=\mathrm{e}^{3 x}$. Here $k=3$, so we guess $y_{p}(x)=A e^{3 x}$. Now we use the method of undetermined coefficients. First, we find the derivatives of the particular solution.

$$
\left[\begin{array}{ll}
>\text { yp } & :=\text { A*exp }\left(3^{*} x\right) ; \\
\text { yp_prime } & :=\operatorname{diff}(y p, x) ; \\
\text { yp_double_prime }:= & \text { diff(yp, x } \$ 2) ; \\
& y p:=A \mathrm{e}^{3 x} \\
& y p _p r i m e:=3 A \mathrm{e}^{3 x} \\
& y p _d o u b l e _p r i m e:=9 A \mathrm{e}^{3 x} \tag{2.1}
\end{array}\right.
$$

Now we substitute the expressions we found above in to the differential equation.

$$
\left[\begin{array}{c}
>\text { ode }:=\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=\exp \left(3^{*} x\right) ; \\
\begin{array}{c}
\text { ode_with_yp }:=\text { eval(ode, }\left\{\operatorname{diff}(y(x), x \$ 2)=y p _d o u b l e _p r i m e,\right.
\end{array} \\
\left.\left.\operatorname{diff(y(x),x)=yp_ prime,y(x)}=y p\right\}\right) ; \\
\text { ode }:=\frac{d^{2}}{d x^{2}} y(x)+\frac{d}{d x} y(x)-6 y(x)=e^{3 x} \\
\text { ode_with_yp }:=6 \mathrm{Ae}^{3 x}=\mathrm{e}^{3 x} \tag{2.2}
\end{array}\right.
$$

If the particular solution is in fact a solution to our ODE, then the coefficients on the LHS must agree with the coefficients on the RHS. This says that $6 A=1 \Rightarrow A=\frac{1}{6}$. Thus the particular solution is $y_{p}(x)=\frac{1}{6} e^{3 x}$ and the general solution is $y(x)=y_{c}(x)+y_{p}(x)=\left(c_{1} e^{2 x}+c_{2} e^{-3 x}\right)+\left(\frac{1}{6} e^{3 x}\right)$.

We can verify this using dsolve.
$>$ dsolve(diff(y(x), $x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=\exp \left(3^{*} x\right), y$ (x)) ;

$$
\begin{equation*}
y(x)=\mathrm{e}^{2 x} _C 2+\mathrm{e}^{-3 x}-C 1+\frac{1}{6} \mathrm{e}^{3 x} \tag{2.3}
\end{equation*}
$$

$F(x)=\cos (m \cdot x)$ or $\sin (m \cdot x)$
We guess that $y_{p}(x)=A \cos (m x)+B \sin (m x)$ where A, B are constants.
Suppose $G(x)=\cos (3 x)$. Here $m=3$ so we guess $y_{p}(x)=A \cos (3 x)+B \sin (3 x)$. Now we use the method of undetermined coefficients. First, we find the derivatives of the particular solution.

$$
\begin{align*}
& >\text { yp } \quad:=A^{*} \cos \left(3^{*} x\right)+B^{*} \sin \left(3^{*} x\right) \text {; } \\
& \text { yp_prime } \quad:=\operatorname{diff}(y p, x) \text {; } \\
& \text { yp_double_prime := diff(yp, x\$2); } \\
& y p:=A \cos (3 x)+B \sin (3 x) \\
& y p _ \text {prime }:=-3 A \sin (3 x)+3 B \cos (3 x) \\
& y p _d o u b l e _p r i m e:=-9 A \cos (3 x)-9 B \sin (3 x) \tag{3.1}
\end{align*}
$$

Now we substitute the expressions we found above in to the differential equation.

$$
\left[\begin{array}{l}
\text { ode }:=\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=\cos \left(3^{*} x\right) ; \\
\begin{array}{l}
\text { ode_with_yp }:=\text { eval(ode, }\left\{\operatorname{diff}(y(x), x \$ 2)=y p _ \text {double_prime },\right. \\
\left.\left.\operatorname{diff}(y(x), x)=y p _p r i m e, y(x)=y p\right\}\right) ;
\end{array} \\
\text { ode }:=\frac{d^{2}}{d x^{2}} y(x)+\frac{d}{d x} y(x)-6 y(x)=\cos (3 x) \\
\text { ode_with_yp }:=-15 A \cos (3 x)-15 B \sin (3 x)-3 A \sin (3 x)+3 B \cos (3 x)=\cos (3 x)
\end{array}\right.
$$

We then collect common terms. We have to collect the terms with $\cos (3 x)$ and $\sin (3 x)$ separately.
[> collected_ode := collect(ode_with_yp, $\cos \left(3^{*} x\right)$);
collected_ode := collect(collected_ode, sin(3*x));
collected_ode $:=(-15 A+3 B) \cos (3 x)-15 B \sin (3 x)-3 A \sin (3 x)=\cos (3 x)$
collected_ode $:=(-15 B-3 A) \sin (3 x)+(-15 A+3 B) \cos (3 x)=\cos (3 x)$
If the particular solution is in fact a solution to our ODE, then the coefficients on the LHS must agree with the coefficients on the RHS. This gives us a system of equations to solve.
$>$ constants :=
solve([
],
$\{A, B\}$);

$$
\begin{equation*}
\text { constants }:=\left\{A=-\frac{5}{78}, B=\frac{1}{78}\right\} \tag{3.4}
\end{equation*}
$$

Thus the particular solution is
[> eval(yp, constants);

$$
\begin{equation*}
-\frac{5}{78} \cos (3 x)+\frac{1}{78} \sin (3 x) \tag{3.5}
\end{equation*}
$$

The general solution is then
$y(x)=y_{c}(x)+y_{p}(x)=\left(c_{1} e^{2 x}+c_{2} e^{-3 x}\right)+\left(-\frac{5}{78} \cos (3 x)+\frac{1}{78} \sin (3 x)\right)$.
We can verify this using dsolve.

$$
\begin{align*}
& >\text { dsolve(diff }(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6^{*} y(x)=\cos \left(3^{*} x\right), y \\
& (x)) ; \\
& y(x)=_C 2 \mathrm{e}^{-3 x}+_C 1 \mathrm{e}^{2 x}-\frac{5}{78} \cos (3 x)+\frac{1}{78} \sin (3 x) \tag{3.6}
\end{align*}
$$

$G(x)=e^{k x} P(x) \cos (m x)$ or $e^{k x} P(x) \sin (m x)$
This is the most general case, as it is a product of cases above. If $P(x)$ is a $n^{\text {th }}$ degree polynomial then our guess should be $y_{p}(x)=e^{k x} Q(x) \cos (m x)+e^{k x} R(x) \sin (m x)$.

Suppose $G(x)=e^{2 x} \cdot x \cdot \cos (3 x)$. Here $k=2, P(x)=x, m=3$ so we guess
$y_{p}(x)=e^{2 x}(A \cdot x+B) \cos (3 x)+e^{2 x}(C \cdot x+F) \sin (3 x)$. (I choose to use F because D is reserved by Maple). Now we use the method of undetermined coefficients. First, we find the derivatives of the particular solution.

$$
\begin{aligned}
& >\text { yp } \quad:=\exp \left(2^{*} x\right)^{*}\left(A^{*} x+B\right){ }^{*} \cos \left(3^{*} x\right)+\exp \left(2^{*} x\right)^{*}\left(C^{*} x+F\right) \\
& \text { *sin(3*x); } \\
& \text { yp_prime := diff(yp, x); } \\
& \text { yp_double_prime := diff(yp, x\$2); } \\
& y p:=\mathrm{e}^{2 x}(A x+B) \cos (3 x)+\mathrm{e}^{2 x}(C x+F) \sin (3 x) \\
& y p \text { prime }:=2 \mathrm{e}^{2 x}(A x+B) \cos (3 x)+\mathrm{e}^{2 x} A \cos (3 x)-3 \mathrm{e}^{2 x}(A x+B) \sin (3 x) \\
& +2 \mathrm{e}^{2 x}(C x+F) \sin (3 x)+\mathrm{e}^{2 x} C \sin (3 x)+3 \mathrm{e}^{2 x}(C x+F) \cos (3 x) \\
& y p _d o u b l e _p r i m e:=-5 \mathrm{e}^{2 x}(A x+B) \cos (3 x)+4 \mathrm{e}^{2 x} A \cos (3 x)-12 \mathrm{e}^{2 x}(A x \\
& +B) \sin (3 x)-6 \mathrm{e}^{2 x} A \sin (3 x)-5 \mathrm{e}^{2 x}(C x+F) \sin (3 x)+4 \mathrm{e}^{2 x} C \sin (3 x) \\
& +12 \mathrm{e}^{2 x}(C x+F) \cos (3 x)+6 \mathrm{e}^{2 x} C \cos (3 x)
\end{aligned}
$$

Now we substitute the expressions we found above in to the differential equation.

```
\(>\) ode : = diff(y(x), x\$2) + diff(y(x), x)-6*y(x)=exp(2*x)*x*
    \(\cos \left(3^{*} x\right)\);
```

 ode_with_yp := eval(ode, \{diff(y(x), x\$2) = yp_double_prime,
 diff(y(x), x) = yp_prime, y(x) = yp\});
 ode \(:=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} y(x)+\frac{\mathrm{d}}{\mathrm{d} x} y(x)-6 y(x)=\mathrm{e}^{2 x} x \cos (3 x)\)
 ode_with_yp : $=-9 \mathrm{e}^{2 x}(A x+B) \cos (3 x)+5 \mathrm{e}^{2 x} A \cos (3 x)-15 \mathrm{e}^{2 x}(A x+B) \sin (3 x)$

$$
\begin{align*}
& -6 \mathrm{e}^{2 x} A \sin (3 x)-9 \mathrm{e}^{2 x}(C x+F) \sin (3 x)+5 \mathrm{e}^{2 x} C \sin (3 x)+15 \mathrm{e}^{2 x}(C x \tag{4.2}\\
& +F) \cos (3 x)+6 \mathrm{e}^{2 x} C \cos (3 x)=\mathrm{e}^{2 x} x \cos (3 x)
\end{align*}
$$

We then collect common terms. We have to collect the terms with $e^{2 x} x \cos (3 x), e^{2 x}{ }_{x} \sin (3 x)$, $e^{2 x} \cos (3 x), e^{2 x} \sin (3 x)$ separately. This isn't the easiest thing in Maple so we do the best we can.
[> collected_ode := collect(ode_with_yp, sin(3*x));
collected_ode := collect(collected_ode, cos(3*x));
collected_ode := collect(collected_ode, x);
collected_ode := collect(collected_ode, exp(2*x));
collected_ode $:=\left(-9 \mathrm{e}^{2 x}(C x+F)+5 \mathrm{e}^{2 x} C-15 \mathrm{e}^{2 x}(A x+B)-6 \mathrm{e}^{2 x} A\right) \sin (3 x)$

$$
-9 \mathrm{e}^{2 x}(A x+B) \cos (3 x)+5 \mathrm{e}^{2 x} A \cos (3 x)+15 \mathrm{e}^{2 x}(C x+F) \cos (3 x)
$$

$$
\begin{align*}
& \quad+6 \mathrm{e}^{2 x} C \cos (3 x)=\mathrm{e}^{2 x} x \cos (3 x) \\
& \text { collected_ode }:=\left(-9 \mathrm{e}^{2 x}(A x+B)+5 \mathrm{e}^{2 x} A+15 \mathrm{e}^{2 x}(C x+F)+6 \mathrm{e}^{2 x} C\right) \cos (3 x)+(\\
& \left.-9 \mathrm{e}^{2 x}(C x+F)+5 \mathrm{e}^{2 x} C-15 \mathrm{e}^{2 x}(A x+B)-6 \mathrm{e}^{2 x} A\right) \sin (3 x)=\mathrm{e}^{2 x} x \cos (3 x) \\
& \text { collected_ode }:=\left(\left(15 \mathrm{e}^{2 x} C-9 \mathrm{e}^{2 x} A\right) \cos (3 x)+\left(-15 \mathrm{e}^{2 x} A-9 \mathrm{e}^{2 x} C\right) \sin (3 x)\right) x+(\\
& \left.-9 \mathrm{e}^{2 x} B+6 \mathrm{e}^{2 x} C+5 \mathrm{e}^{2 x} A+15 \mathrm{e}^{2 x} F\right) \cos (3 x)+\left(-9 \mathrm{e}^{2 x} F-6 \mathrm{e}^{2 x} A+5 \mathrm{e}^{2 x} C\right. \\
& \left.\quad-15 \mathrm{e}^{2 x} B\right) \sin (3 x)=\mathrm{e}^{2 x} x \cos (3 x) \\
& \text { collected_ode }:=(((15 C-9 A) \cos (3 x)+(-15 A-9 C) \sin (3 x)) x+(-9 B+6 C \tag{4.3}\\
& \quad+5 A+15 F) \cos (3 x)+(-9 F-6 A+5 C-15 B) \sin (3 x)) \mathrm{e}^{2 x}=\mathrm{e}^{2 x} x \cos (3 x)
\end{align*}
$$

If the particular solution is in fact a solution to our ODE, then the coefficients on the LHS must agree with the coefficients on the RHS. This gives us a system of equations to solve.
> constants :=

solve([

],
$\{A, B, C, F\})$;

$$
\begin{equation*}
\text { constants }:=\left\{A=-\frac{1}{34}, B=\frac{65}{2601}, C=\frac{5}{102}, F=\frac{3}{578}\right\} \tag{4.4}
\end{equation*}
$$

Thus the particular solution is
「> eval(yp, constants);

$$
\begin{equation*}
\mathrm{e}^{2 x}\left(-\frac{1}{34} x+\frac{65}{2601}\right) \cos (3 x)+\mathrm{e}^{2 x}\left(\frac{5}{102} x+\frac{3}{578}\right) \sin (3 x) \tag{4.5}
\end{equation*}
$$

The general solution is then

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x)=\left(c_{1} e^{2 x}+c_{2} e^{-3 x}\right)+\left(\mathrm{e}^{2 x}\left(-\frac{1}{34} x+\frac{65}{2601}\right) \cos (3 x)+\mathrm{e}^{2 x}\left(\frac{5}{102} x\right.\right. \\
& \left.\left.+\frac{3}{578}\right) \sin (3 x)\right)
\end{aligned}
$$

We can verify this using dsolve. It turns out these solutions are the same.

$$
\left[\begin{array}{l}
>\text { dsolve(diff }(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6^{*} y(x)=\exp \left(2^{*} x\right)^{*} x^{*} \\
\left.\quad \cos \left(3^{*} x\right), y(x)\right) ; \\
y(x)=_C 2 \mathrm{e}^{-3 x}+_C 1 \mathrm{e}^{2 x}+\frac{1}{5202}(-153 x+130) \mathrm{e}^{2 x} \cos (3 x)+\frac{5}{102} \sin (3 x) \mathrm{e}^{2 x}(x \tag{4.6}\\
\left.\quad+\frac{9}{85}\right)
\end{array}\right.
$$

Homework

Solve the differential equation $y^{\prime \prime}-y=x e^{x}, y(0)=2, y^{\prime}(0)=1$.

