Homogeneous Second-Order Differential Equations

James Rohal

We are going to use Maple to solve some second-order differential equations. They take the form $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=G(x)$. A homogeneous second-order differential equations has $G(x)$
$=0$ so it looks like $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$. We are going to look at a special case where $P(x)=a, Q(x)=b, R(x)=c$ and a, b, c are constants.

$$
>y^{\prime \prime}+y^{\prime}-6 y=0
$$

Solve the characteristic equation
$\left[>\right.$ solve ($\left.r^{\wedge} 2+r-6=0, r\right)$;

$$
\begin{equation*}
2,-3 \tag{1.1}
\end{equation*}
$$

Two different real solutions means that the general solution is $y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}$ where c_{1}, c_{2} are constants. We can verify this using dsolve.
[> dsolve(diff(y(x), x\$2) + diff(y(x), x) - 6*y(x) = 0, y(x));

$$
\begin{equation*}
y(x)=_C 1 \mathrm{e}^{-3 x}+_C 2 \mathrm{e}^{2 x} \tag{1.2}
\end{equation*}
$$

Maple denotes the constants as $_C 1$ and $_C 2$ rather than c_{1} and c_{2}.

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0
$$

Solve the characteristic equation

$$
\left[\begin{array}{rl}
> & \text { solve }\left(4 *^{\wedge} r^{\wedge}+12 * r+9=\right. \\
& 0, r) ; \tag{2.1}\\
& -\frac{3}{2},-\frac{3}{2}
\end{array}\right.
$$

One real solutions means that the general solution is $y(x)=c_{1} e^{-\frac{3}{2} x}+c_{2} x e^{-\frac{3}{2} x}$ where c_{1}, c_{2} are constants. We can verify this using dsolve.
$\left[\begin{array}{c}>\mathrm{dsolve}\left(4^{*} \operatorname{diff}(y(x), x \$ 2)+12 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(x)\right) \\ y(x)=_C 1 \mathrm{e}^{-\frac{3}{2} x}+_C 2 \mathrm{e}^{-\frac{3}{2} x} x\end{array}\right.$
Maple denotes the constants as _C1 and _C2 rather than c_{1} and c_{2}.

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

Solve the characteristic equation

$$
\left[\begin{array}{r}
>\text { solve }\left(r^{\wedge} 2-6^{*} r+13=0, r\right) ; \\
3+2 I, 3-2 I \tag{3.1}
\end{array}\right.
$$

No real solutions means that the general solution is $y(x)=e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)$ where c_{1}, c_{2} are constants. We can verify this using dsolve.
$\lceil>$ dsolve(diff(y(x), x\$2) - 6*diff(y(x), x) + 13*y(x) = 0, $y(x))$;

$$
\begin{equation*}
y(x)=_C 1 \mathrm{e}^{3 x} \sin (2 x)+_C 2 \mathrm{e}^{3 x} \cos (2 x) \tag{3.2}
\end{equation*}
$$

Maple denotes the constants as _C1 and _C2 rather than c_{1} and c_{2}.

Initial Value Problem

An IVP has conditions of the form $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{1}$. Let's solve the initial value problem $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=1, y^{\prime}(0)=3$.

We already know the general solution is $y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}$ where c_{1}, c_{2} are constants. The conditions allow us to find c_{1}, c_{2}. I am going to call the constants _C1 and _C2 so that it matches with the notation Maple gives us when using dsolve.

$$
\begin{align*}
& \text { [> y_original := _C1*exp(2*x) + _C2*exp(-3*x); } \\
& y \text { _original:=_C1 } \mathrm{e}^{2 x}+_C 2 \mathrm{e}^{-3 x} \tag{4.1}\\
& \text { y_prime := diff(y_original,x); } \\
& \text { y_prime :=2 _C1 } \mathrm{e}^{2 x}-3 \text { _C2 } \mathrm{e}^{-3 x} \tag{4.2}
\end{align*}
$$

To use the conditions, we plug them our expressions for $y(x)$ and $y^{\prime}(x)$ which are given as y_original and y_prime. This gives us a system of equations to solve.

$$
\begin{align*}
& \text { [> eqn1 } \quad:=1 \text { = eval(y_original, } x=0 \text {); } \\
& \text { eqn2 }:=3 \text { = eval(y_prime, } x=0) \text {; } \\
& \text { constants := solve([eqn1, eqn2], \{_C1, _C2\}); } \\
& \text { eqn1 := } 1 \text { =_C1 +_C2 } \\
& \text { eqn2 }:=3=2 \text { _C1 - } 3 \text { _C2 } \\
& \text { constants }:=\left\{-C 1=\frac{6}{5},-C 2=-\frac{1}{5}\right\} \tag{4.3}
\end{align*}
$$

Now that we know the constants _C1 and _C2, we can substitute them back in to our original expression.
[> eval(y_original, constants);

$$
\begin{equation*}
\frac{6}{5} \mathrm{e}^{2 x}-\frac{1}{5} \mathrm{e}^{-3 x} \tag{4.4}
\end{equation*}
$$

This is the same solution that dsolve gives us.

$$
\left[\begin{array}{l}
>\operatorname{dsolve}(\{\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=0, y(0)=1, \\
\mathrm{D}(y)(0)=3\}, y(x)) ; \\
y(x)=\frac{6}{5} \mathrm{e}^{2 x}-\frac{1}{5} \mathrm{e}^{-3 x} \tag{4.5}
\end{array}\right.
$$

Boundary Value Problem

A BVP has conditions of the form $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$. Let's solve the boundary value problem $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=1, y(1)=3$.

We already know the general solution is $y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}$ where c_{1}, c_{2} are constants. The conditions allow us to find c_{1}, c_{2}. I am going to call the constants _C1 and _C2 so that it matches with the notation Maple gives us when using dsolve.

To use the conditions, we plug them our expression for $y(x)$ which is given as $y _o r i g i n a l$. This
gives us a system of equations to solve.

$$
\begin{align*}
& >\text { eqn1 } \quad:=1 \text { = eval(y_original, } x=0) \text {; } \\
& \text { eqn2 := } 3 \text { = eval(y_original, } x=1 \text {); } \\
& \text { constants := solve([eqn1, eqn2], \{_C1, _C2\}); } \\
& \text { eqn1 := } 1 \text { = _C1 + _C2 } \\
& \text { eqn2 }:=3=_C 1 \mathrm{e}^{2}+_C 2 \mathrm{e}^{-3} \\
& \text { constants : }=\left\{-C 1=-\frac{\mathrm{e}^{-3}-3}{\mathrm{e}^{2}-\mathrm{e}^{-3}}, \quad{ }_{-} 2=\frac{-3+\mathrm{e}^{2}}{\mathrm{e}^{2}-\mathrm{e}^{-3}}\right\} \tag{5.2}
\end{align*}
$$

Now that we know the constants _C1 and _C2, we can substitute them back in to our original expression.
[> eval(y_original, constants);

$$
\begin{equation*}
-\frac{\left(\mathrm{e}^{-3}-3\right) \mathrm{e}^{2 x}}{\mathrm{e}^{2}-\mathrm{e}^{-3}}+\frac{\left(-3+\mathrm{e}^{2}\right) \mathrm{e}^{-3 x}}{\mathrm{e}^{2}-\mathrm{e}^{-3}} \tag{5.3}
\end{equation*}
$$

This is the same solution that dsolve gives us.

$$
\left[\begin{array}{c}
>\operatorname{dsolve}(\{\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=0, y(0)=1, \\
y(1)=3\}, y(x)) ;
\end{array}\right.
$$

Homework

Do problem 21 in Section 7.7 Solve the differential equation $y^{\prime \prime}+16 y=0, y\left(\frac{\pi}{4}\right)=-3, y^{\prime}\left(\frac{\pi}{4}\right)=4$.

