
Differential Equations
Your Name Goes Here

Introduction
The goal of this notebook is to introduce you to the process of solving differential equations in Mathematica. We will
introduce you to the DSolve command which is useful for finding exact solutions. We will also see how Mathemat-

ica can be used to draw slope fields to visualize the solution to differential equations. Furthermore, we can visualize
the steps of Euler’s method and write an automated procedure for computing a numerical solution to a differential
equation.

Execute All The Cells In This Section Before Beginning
Evaluate every cell below every time you begin working on this notebook. It initializes certain commands that you
will be using. You do not need to understand the commands in this section.

SlopeField[F_, {var1_, a_, b_}, {var2_, c_, d_}] := VectorPlot{1, F}, {var1, a, b},

{var2, c, d}, VectorScale → Min
Min[Abs[b - a], Abs[d - c]]

40
, 0.03, Automatic, None,

VectorStyle → "Segment", Frame → None, Axes → True, AxesLabel → {x, y}, VectorPoints → 20;

EulerTable[F_, {x0_, y0_}, h_, n_, row_: All] :=

Module[{upperBound, RHS, ode, soln, X, Y, i, exact},

upperBound = x0 + h n;

RHS = F /. y → y[x];

ode = y'[x] ⩵ RHS;

soln = Flatten@NDSolve[{ode, y[x0] ⩵ y0}, y, {x, x0, upperBound}];

X = {x0};

Y = {y0};

For[i = 1, i ≤ n, i++,

AppendTo[X, X〚i〛 + h];

AppendTo[Y, Y〚i〛 + h F /. {x → X〚i〛, y → Y〚i〛}];

];

exact = (y[#] & /@ X) /. soln;

If[row === All,

TableForm[{Range[0, n], X, Y, exact, Abs[exact - Y]},

TableHeadings → {None, {"i", "xi", "yi (Euler)", "y(xi) (Exact)", "Error"}}],

TableForm[{Transpose[{Range[0, n], X, Y, exact, Abs[exact - Y]}]〚row + 1〛},

TableHeadings → {None, {"i", "xi", "yi (Euler)", "y(xi) (Exact)", "Error"}}]

]

];

EulerPlot[F_, {x0_, y0_}, h_, n_] :=

Module{Xupper, RHS, ode, soln, X, Y, i, exact, Ylower, Yupper},

Xupper = x0 + h n;

RHS = F /. y → y[x];

ode = y'[x] ⩵ RHS;

soln = Flatten@NDSolve[{ode, y[x0] ⩵ y0}, y, {x, x0, Xupper}];

X = {x0};

Y = {y0};

For[i = 1, i ≤ n, i++,

AppendTo[X, X〚i〛 + h];

AppendTo[Y, Y〚i〛 + h F /. {x → X〚i〛, y → Y〚i〛}];

];

exact = (y[#] & /@ X) /. soln;

Ylower = Min[{Y, exact}];

Yupper = Max[{Y, exact}];

LegendedShow

Plot[Evaluate[y[x] /. soln], {x, x0, Xupper}, PlotStyle → Blue],

ListLinePlot[{X, Y}, PlotStyle → Red],

VectorPlot{1, F}, {x, x0, Xupper}, {y, Ylower, Yupper},

VectorScale → Min
Min[Abs[Xupper - x0], Abs[Yupper - Ylower]]

40
, 0.03, Automatic, None,

VectorStyle → {{Gray, "Segment"}}, VectorPoints → 20,

Show[Graphics[{PointSize[0.01], Red, Point /@ Transpose[{X, Y}],

Blue, Point /@ Transpose[{X, exact}]}]],

AxesLabel → {x, y}, ImageSize → Large, PlotRange → All

, LineLegend[{Blue, Red}, {"Exact Solution y(x)", "Euler Approximation of y(x)"}]

;

(* http://

mathematica.stackexchange.com/questions/18012/label-area-on-plot/18079#18079 *)

braceLabel[{p1_, p2_}, lbl_, scale_: .02] :=

{Arrowheads[{{scale, 0, {Graphics@Circle[{1, -1}, 1, {Pi / 2, Pi}], -1}}, {scale, 1,

{Graphics[{Circle[{-1, 1}, 1, {-Pi / 2, 0}], Rotate[Inset[lbl, {0, 4}], 180 Degree]}],

1}}}], Arrow[{p1, (p1 + p2) / 2}],

Arrowheads[{{scale, 0, {Graphics@Circle[{1, 1}, 1, {Pi, 3 Pi / 2}], -1}},

{scale, 1, {Graphics@Circle[{-1, -1}, 1, {0, Pi / 2}], 1}}}], Arrow[{(p1 + p2) / 2, p2}]};

EulerAnimate[F_, {x0_, y0_}, h_, n_] :=

Module{Xupper, RHS, ode, soln, X, Y, i, exact, Ylower, Yupper, veclength,

exactplot, vecplot, vecplotlight, initialpoint, whitestepsize, frames, frame1,

frame2, frame3, contourpieces, points, currentslope, frame, whitepointplot},

Xupper = x0 + h n;

RHS = F /. y → y[x];

ode = y'[x] ⩵ RHS;

soln = Flatten@NDSolve[{ode, y[x0] ⩵ y0}, y, {x, x0, Xupper}];

X = {x0};

Y = {y0};

For[i = 1, i ≤ n, i++,

AppendTo[X, X〚i〛 + h];

2 Differential Equations.nb

AppendTo[Y, Y〚i〛 + h F /. {x → X〚i〛, y → Y〚i〛}];

];

exact = (y[#] & /@ X) /. soln;

Ylower = Min[{Y, exact}];

Yupper = Max[{Y, exact}];

veclength = Min
Min[Abs[Xupper - x0], Abs[Yupper - Ylower]]

40
, 0.03;

exactplot =

Plot[Evaluate[y[x] /. soln], {x, x0, Xupper}, PlotStyle → Blue, AspectRatio → Automatic];

vecplot = VectorPlot[{1, F}, {x, x0, Xupper}, {y, Ylower, Yupper}, VectorScale →

{veclength, Automatic, None}, VectorStyle → {{Gray, "Segment"}}, VectorPoints → 20];

vecplotlight = VectorPlot[{1, F}, {x, x0, Xupper}, {y, Ylower, Yupper},

VectorScale → {veclength, Automatic, None},

VectorStyle → {{LightGray, "Segment"}}, VectorPoints → 20];

initialpoint = Graphics[{Red, PointSize[Large], Point[{x0, y0}]}];

whitestepsize = WithstartPoint = h, Ylower -
(Yupper - Ylower)

13
,

endPoint = X〚1〛, Ylower -
(Yupper - Ylower)

13
, scale = .02, Graphics[

{White, braceLabel[{startPoint, endPoint}, Style["h (stepsize)", Larger], scale]}];

whitepointplot = ListPlot[{X, Y}, PlotStyle → White];

frames = {};

frame1 = Legended[Show[

exactplot,

whitepointplot,

whitestepsize,

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

], Column[{LineLegend[{Blue}, {"Exact Solution y(x)"}]}]];

AppendTo[frames, frame1];

frame2 = Legended[Show[

exactplot,

whitepointplot,

initialpoint,

whitestepsize,

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

], Column[{LineLegend[{Blue}, {"Exact Solution y(x)"}], PointLegend[{Red},

{"Starting Point (x0, y0)"}, LegendMarkers → {Graphics[Disk[]]}]}]];

AppendTo[frames, frame2];

frame3 = Legended[Show[

exactplot,

whitepointplot,

initialpoint,

vecplot,

whitestepsize,

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

],

Column[{LineLegend[{Gray, Blue}, {"Slope Field", "Exact Solution y(x)"}], PointLegend[

Differential Equations.nb 3

{Red}, {"Starting Point (x0, y0)"}, LegendMarkers → {Graphics[Disk[]]}]}]];

AppendTo[frames, frame3];

contourpieces = {};

points = {initialpoint};

Fori = 1, i ≤ n, i++,

currentslope = F /. {x → X〚i〛, y → Y〚i〛};

If[i > 1,

frame = Legended[Show[

exactplot,

vecplotlight,

contourpieces,

points,

whitestepsize,

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

], Column[{LineLegend[{Red, LightGray, Blue},

{"Approximate Solution", "Slope Field", "Exact Solution y(x)"}],

PointLegend[{Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))"}, LegendMarkers → {Graphics[Disk[]]}]}]];

AppendTo[frames, frame];

];

frame = Legended[Show[

exactplot,

vecplotlight,

If[i > 1, contourpieces, {}],

ContourPlot[y - Y〚i〛 ⩵ currentslope (x - X〚i〛), {x, X〚i〛, X〚i〛 + 3 veclength},

{y, Ylower, Yupper}, ContourStyle → Directive[Black, Thickness[0.02]]],

points,

whitestepsize,

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

],

If[i > 1,

Column[{LineLegend[{Black, Red, LightGray, Blue},

{"Line with slope F(\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\),\!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))",

"Approximate Solution", "Slope Field", "Exact Solution y(x)"}], PointLegend[

{Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\), \!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))"},

LegendMarkers → {Graphics[Disk[]]}]}], Column[{LineLegend[

{Black, LightGray, Blue}, {"Line with slope F(\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\),\!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))", "Slope Field", "Exact Solution y(x)"}],

PointLegend[{Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))"}, LegendMarkers → {Graphics[Disk[]]}]}]

]

];

AppendTo[frames, frame];

frame = LegendedShow

4 Differential Equations.nb

exactplot,

vecplotlight,

If[i > 1, contourpieces, {}],

ContourPlot[y - Y〚i〛 ⩵ currentslope (x - X〚i〛), {x, X〚i〛, X〚i〛 + h},

{y, Ylower, Yupper}, ContourStyle → Directive[Black, Thickness[0.02]]],

points,

WithstartPoint = X〚1〛 + i h, Ylower -
(Yupper - Ylower)

13
,

endPoint = X〚1〛 + (i - 1) h, Ylower -
(Yupper - Ylower)

13
, scale = .02, Graphics[

braceLabel[{startPoint, endPoint}, Style["h (stepsize)", Larger], scale]],

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

,

If[i > 1,

Column[{LineLegend[{Black, Red, LightGray, Blue},

{"Line with slope F(\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\),\!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))",

"Approximate Solution", "Slope Field", "Exact Solution y(x)"}], PointLegend[

{Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\), \!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))"},

LegendMarkers → {Graphics[Disk[]]}]}], Column[{LineLegend[

{Black, LightGray, Blue}, {"Line with slope F(\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\),\!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))", "Slope Field", "Exact Solution y(x)"}],

PointLegend[{Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))"}, LegendMarkers → {Graphics[Disk[]]}]}]

]

;

AppendTo[frames, frame];

frame = LegendedShow

exactplot,

vecplotlight,

If[i > 1, contourpieces, {}],

ContourPlot[y - Y〚i〛 ⩵ currentslope (x - X〚i〛), {x, X〚i〛, X〚i〛 + h},

{y, Ylower, Yupper}, ContourStyle → Directive[Black, Thickness[0.02]]],

points,

WithstartPoint = X〚1〛 + i h, Ylower -
(Yupper - Ylower)

13
,

endPoint = X〚1〛 + (i - 1) h, Ylower -
(Yupper - Ylower)

13
, scale = .02, Graphics[

braceLabel[{startPoint, endPoint}, Style["h (stepsize)", Larger], scale]],

Graphics[{EdgeForm[{Red, Thick}], White, Disk[{X〚i + 1〛, Y〚i + 1〛}, 0.01]}],

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

,

If[i > 1,

Column[{LineLegend[{Black, Red, LightGray, Blue},

{"Line with slope F(\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\),\!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))",

"Approximate Solution", "Slope Field", "Exact Solution y(x)"}],

Differential Equations.nb 5

PointLegend[{Red, Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))", "New Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i] <> "\)]\))"}, LegendMarkers → {Graphics[Disk[]],

Graphics[{EdgeForm[{Red, Thickness[0.3]}], White, Disk[]}]}]}],

Column[{LineLegend[{Black, LightGray, Blue},

{"Line with slope F(\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\),\!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))",

"Slope Field", "Exact Solution y(x)"}], PointLegend[{Red, Red},

{"Starting Point (\!\(*SubscriptBox[\(x\), \(" <> ToString[i - 1] <>

"\)]\), \!\(*SubscriptBox[\(y\), \(" <> ToString[i - 1] <> "\)]\))",

"New Point (\!\(*SubscriptBox[\(x\), \(" <> ToString[i] <>

"\)]\), \!\(*SubscriptBox[\(y\), \(" <> ToString[i] <> "\)]\))"}, LegendMarkers →

{Graphics[Disk[]], Graphics[{EdgeForm[{Red, Thickness[0.3]}], White, Disk[]}]}]}]

]

;

AppendTo[frames, frame];

AppendTo[contourpieces, ContourPlot[y - Y〚i〛 ⩵ currentslope (x - X〚i〛),

{x, X〚i〛, X〚i〛 + h}, {y, Ylower, Yupper}, ContourStyle → Red]];

AppendTo[points, Graphics[{Red, PointSize[Large], Point[{X〚i + 1〛, Y〚i + 1〛}]}]];

frame = LegendedShow

exactplot,

initialpoint,

vecplotlight,

contourpieces,

WithstartPoint = X〚1〛 + i h, Ylower -
(Yupper - Ylower)

13
,

endPoint = X〚1〛 + (i - 1) h, Ylower -
(Yupper - Ylower)

13
, scale = .02, Graphics[

braceLabel[{startPoint, endPoint}, Style["h (stepsize)", Larger], scale]],

points,

Graphics[{EdgeForm[{Red, Thick}], White, Disk[{X〚i + 1〛, Y〚i + 1〛}, 0.01]}],

AxesLabel → {x, y}, ImageSize → Large, PlotRange → {{x0, Xupper}, All}

, Column[{LineLegend[{Red, LightGray, Blue},

{"Approximate Solution", "Slope Field", "Exact Solution y(x)"}],

PointLegend[{Red, Red}, {"Starting Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i - 1] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i - 1] <> "\)]\))", "New Point (\!\(*SubscriptBox[\(x\), \(" <>

ToString[i] <> "\)]\), \!\(*SubscriptBox[\(y\), \(" <>

ToString[i] <> "\)]\))"}, LegendMarkers → {Graphics[Disk[]],

Graphics[{EdgeForm[{Red, Thickness[0.3]}], White, Disk[]}]}]}];

AppendTo[frames, frame];

; (* end for *)

ListAnimate[frames, AnimationRunning → False]

(* end module *)

Mathematica Commands

6 Differential Equations.nb

Representing Differential Equations in Mathematica

Recall that an (ordinary) differential equation is a mathematical equation that relates some function of one variable
with its derivatives. For example, here is a first-order non-homogeneous differential equation:

2 y ' (x) - 3 y(x) = x2

This differential equation has independent variable x and dependent variable y. Solving a differential equation

consists essentially of finding the form of an unknown function. In Mathematica, unknown functions are represented
by expressions like y[x] where y is the dependent variable and x is the independent variable. The derivatives of

such functions are represented by y'[x], y''[x], and so on. To represent the previous example in Mathemat-

ica we would use the following notation:

2 y'[x] - 3 y[x] == x^2

It is very important to notice that there are two equal signs above. A single equal sign is used for assignment
(storing values) while two equal signs is used for equality. Because of this difference, you can store differential
equations in variables. Here, we store the differential equation above in the variable
myDifferentialEquation:

myDifferentialEquation = 2 y'[x] - 3 y[x] == x^2;

Solving Differential Equations (DSolve)

To solve a differential equation in Mathematica, we use the DSolve command. DSolve[ode, y[x], x] solves the
differential equation ode which has dependent variable y and independent variable x. For example, to solve the

differential equation 2 y ' (x) - 3 y(x) = x2 we do the following:

myDifferentialEquation = 2 y'[x] - 3 y[x] == x^2;

DSolve[myDifferentialEquation, y[x], x]

y[x] →
1

27
-8 - 12 x - 9 x2 + ⅇ3 x/2 C[1]

From this output we can see that the general solution to the differential equation is

y(x) =
1

27
-8 - 12 x - 9 x2 + ⅇ3 x/2 C[1].

The C[1] term is how Mathematica represents arbitrary constants. There is one arbitrary constant in the solution
because the order is one.

Initial Value Problems

An initial value problem is a differential equation that is given with one or multiple initial conditions. Initial conditions
look like:

y(x0) = y0

y ' (x0) = y1

⋮

When you are given an initial condition (or multiple initial conditions) you can solve a differential equation to get a
particular solution (one without arbitrary constants). To solve a differential equation with initial conditions, we again
use the DSolve command. DSolve[{ode, initialCondition1, initialCondition2, ...}, y[x], x]
solves the differential equation ode which has dependent variable y and independent variable x and has initial
conditions initialCondition1, initialCondition2, For example, suppose we want to solve the follow-

Differential Equations.nb 7

ing differential equation with one initial condition:

2 y ' (x) - 3 y(x) = x2

y(3) = 5

As before we represent the differential equation and initial condition as an equality using two equal signs and then
use DSolve:

myDifferentialEquation = 2 y'[x] - 3 y[x] == x^2;

initialCondition1 = y[3] == 5;

DSolve[{myDifferentialEquation, initialCondition1}, y[x], x]

y[x] → -
8 ⅇ9/2 - 260 ⅇ3 x/2 + 12 ⅇ9/2 x + 9 ⅇ9/2 x2

27 ⅇ9/2

From this output we can see that the general solution to the differential equation is

y(x) = -
8 ⅇ9/2-260 ⅇ3 x/2+12 ⅇ9/2 x+9 ⅇ9/2 x2

27 ⅇ9/2
.

As another example, here is a second-order differential equation with two initial condi-
tions:

y '' (x) + 2 y ' (x) - 3 y(x) = ⅇx

y(0) = 1

y ' (0) = 2

As before we represent the differential equation and initial conditions as an equality using two equal signs and then
use DSolve:

myDifferentialEquation = y''[x] + 2 y'[x] - 3 y[x] ⩵ Exp[x];

initialCondition1 = y[0] ⩵ 1;

initialCondition2 = y'[0] ⩵ 2;

DSolve[{myDifferentialEquation, initialCondition1, initialCondition2}, y[x], x]

y[x] →
1

16
ⅇ-3 x -3 + 19 ⅇ4 x + 4 ⅇ4 x x

From this output we can see that the general solution to the differential equation is

y(x) =
1

16
ⅇ-3 x -3 + 19 ⅇ4 x + 4 ⅇ4 x x.

An initial value problem is a differential equation that is given with boundary conditions. Boundary conditions look
like:

y(x0) = y0

y(x1) = y1

⋮

Solving boundary value problems is just like solving initial value problems. DSolve[{ode,
boundaryCondition1, boundaryCondition2, ...}, y[x], x] solves the differential equation ode which has
dependent variable y and independent variable x and has boundary conditions boundaryCondition1,
boundaryCondition2, For example, suppose we want to solve the following differential equation with two
boundary conditions:

y '' (x) + 2 y ' (x) - 3 y(x) = ⅇx

y(0) = 1

y(3) = 2

8 Differential Equations.nb

As before we represent the differential equation and boundary conditions as an equality using two equal signs and
then use DSolve:

myDifferentialEquation = y''[x] + 2 y'[x] - 3 y[x] ⩵ Exp[x];

boundaryCondition1 = y[0] ⩵ 1;

boundaryCondition2 = y[3] ⩵ 2;

DSolve[{myDifferentialEquation, boundaryCondition1, boundaryCondition2}, y[x], x]

y[x] →
ⅇ-3 x (-8 ⅇ9 + 7 ⅇ12 - 4 ⅇ4 x + 8 ⅇ9+4 x - 3 ⅇ12+4 x - ⅇ4 x x + ⅇ12+4 x x)

4 (-1 + ⅇ12)

From this output we can see that the general solution to the differential equation is

y(x) =
ⅇ-3 x -8 ⅇ9+7 ⅇ12-4 ⅇ4 x+8 ⅇ9+4 x-3 ⅇ12+4 x-ⅇ4 x x+ⅇ12+4 x x

4 -1+ⅇ12
.

Slope Fields

To draw a slope field in Mathematica we use the SlopeField command. SlopeField[F, {x, a, b}, {y, c,
d}] allows us to visualize the solutions to the differential equation y ' = F(x, y) where a ≤ x ≤ b and c ≤ y ≤ d. For

example, we can visualize y ' = -
x

y
 where -4 ≤ x ≤ 4 and -4 ≤ y ≤ 4 by doing the following:

SlopeField[-x / y, {x, -4, 4}, {y, -4, 4}]

-4 -2 2 4
x

-4

-2

2

4

y

Euler’s Method

To get approximate solutions to ordinary differential equations, we can use Euler’s method. Suppose our differential
equation looks like: y ' = F(x, y)

y(x0) = y0

. Euler’s method is an algorithm that takes three inputs, and outputs a set of points

with the following specification:

Input
 F(x, y), a function in the variables x and y,

 (x0, y0), a point,
 h, a stepsize
 n, the number of steps

Differential Equations.nb 9

, steps
Output
 {(x0, y0), …, (xn, yn)}, a list of points such that xi = xi-1 + h

yi = yi-1 + h F(xi-1, yi-1)

Euler’s method is implemented three different ways. The first is using EulerTable. EulerTable[F, {x0, y0},
h, n] outputs a table of values with n + 1 rows, calculated during Euler’s method, such as the approximate solution
points (xi, yi), the actual solution points (xi, y(xi)), and the error, which is the absolute value of the difference
between the actual solution and the approximate solution: y(xi) - yi . For example, suppose we wish to execute
Euler’s method using a stepsize of 0.1 for 20 steps for the differential equation

y ' = x + y

y(0) = 1

.

We would execute the following:

EulerTable[x + y, {0, 1}, 0.1, 20]

i xi yi (Euler) y(xi) (Exact) Error
0 0 1 1. 0.
1 0.1 1.1 1.11034 0.0103419
2 0.2 1.22 1.24281 0.0228056
3 0.3 1.362 1.39972 0.0377176
4 0.4 1.5282 1.58365 0.0554494
5 0.5 1.72102 1.79744 0.0764226
6 0.6 1.94312 2.04424 0.101116
7 0.7 2.19743 2.32751 0.130071
8 0.8 2.48718 2.65108 0.163904
9 0.9 2.8159 3.01921 0.203311
10 1. 3.18748 3.43656 0.249078
11 1.1 3.60623 3.90833 0.302098
12 1.2 4.07686 4.44023 0.363376
13 1.3 4.60454 5.03859 0.434047
14 1.4 5.195 5.7104 0.5154
15 1.5 5.8545 6.46338 0.608881
16 1.6 6.58995 7.30606 0.716119
17 1.7 7.40894 8.24789 0.83895
18 1.8 8.31983 9.29929 0.979453
19 1.9 9.33182 10.4718 1.13997
20 2. 10.455 11.7781 1.32311

If you execute Euler’s method with a large number of steps, this table gets excessively big. The EulerTable
command has an additional argument that allows you to pick out a specific row of the table. For instance, in the
table above, we can use the following command to the get the row where i = 10:

EulerTable[x + y, {0, 1}, 0.1, 20, 10]

i xi yi (Euler) y(xi) (Exact) Error
10 1. 3.18748 3.43656 0.249078

To help visualize Euler’s method, we use the EulerPlot command. EulerPlot[F, {x0, y0}, h, n] outputs
the points calculated using Euler’s method, connected by straight line segments, along with a plot of a high quality
numerical solution (nearly exact solution). For example, suppose we wish to execute Euler’s method using a step-
size of 0.1 for 20 steps for the differential equation

y ' = x + y

y(0) = 1

.

We could visualize this by executing the following:

10 Differential Equations.nb

EulerPlot[x + y, {0, 1}, 0.1, 20]

0.5 1.0 1.5 2.0
x

2

4

6

8

10

12

y

Exact Solution y(x

Euler Approximation

To give a step by step animation of Euler’s method, we can use the EulerAnimate command. It has the same
specification as the EulerPlot command. Here we illustrate Euler’s method with a stepsize of 0.5 for 2 steps. Drag
the slider to move through the frames of the animation:

Differential Equations.nb 11

EulerAnimate[x + y, {0, 1}, 0.5, 2]

h (stepsize)

0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

2.5

3.0

3.5

y

Exact Solution y(x)

Problems

(a) Compute the general solution of the differential equation y ' = y

ⅇx + 3 cos(x) + 2.

You will notice that the solution is quite strange. This is because Mathematica is having difficulty finding an analytic
solution.

12 Differential Equations.nb

(b) Compute the particular solution of the differential equation y ' = y

ⅇx + 3 cos(x) + 2

with initial condition y(1) = 0.

Nothing particularly changes when we add an initial condition.

(c) Draw the slope field for the differential equation y ' = y

ⅇx + 3 cos(x) + 2 for

-4 ≤ x ≤ 4 and -4 ≤ y ≤ 4.

(e) Execute the code below. Click and drag the slider to see how Euler’s method
with a stepsize of 0.5 and 2 steps works when solving the differential equation

y ' = y

ⅇx + 3 cos(x) + 2

y(1) = 0

.

EulerAnimate[y / Exp[x] + 3 Cos[x] + 2, {1, 0}, 0.5, 2]

(d) Execute the code below. Click and drag your mouse to change the initial point
(red point). The red curve is a high accuracy numerical approximation to the
differential equation y ' = y

ⅇx + 3 cos(x) + 2. What interesting behavior do you

observe as you change the initial point?

Answer:

Manipulate

Show

VectorPlot1,
y

Exp[x]
+ 3 Cos[x] + 2, {x, -4, 4},

{y, -4, 4}, VectorScale → {0.03, Automatic, None}, VectorStyle → "Segment",

Frame → None, Axes → True, AxesLabel → {x, y}, VectorPoints → 20,

PlotEvaluatey[x] /. NDSolvey'[x] ==
y[x]

Exp[x]
+ 3 Cos[x] + 2, y[p〚1〛] ⩵ p〚2〛,

y, {x, -4, 4}, {x, -4, 4}, PlotRange → {-4, 4}, PlotStyle → Red

,

{{p, {1, 0}}, Locator, Appearance → Graphics[{Red, PointSize[0.02], Point[{1, 1}]}]},

AppearanceElements → None, Paneled → False

(e) Consider the differential equation y ' = y

ⅇx + 3 cos(x) + 2

y(1) = 0

. Use the EulerPlot and

EulerTable command with a stepsize of 0.1 for 30 steps to help visualize the
approximate solution to this differential equation. Compare the plot you get with
the plot above when you move the initial condition to the point (1, 0). Answer the
following questions.

■ According to Euler’s method, what is y(4)?
 Answer:
■ What is the exact value of y(4)?

Differential Equations.nb 13

y()

 Answer:
■ What is the error in the approximation?
 Answer:

(f) Consider the differential equation y ' = y

ⅇx + 3 cos(x) + 2

y(1) = 0

.

What would be an appropriate number of steps and an appropriate stepsize so
that Euler’s method gives an approximate value of y(4) that is within 0.0003 away
from the exact value of y(4)?
Hint: Use EulerTable with a carefully chosen stepsize and and step count
number.Then choose the correct row to display.

Answer:

14 Differential Equations.nb

