Approximate Integration

James Rohal

First we load the necessary packages and use an example function f with interval bound [a, b]. There will be n subintervals.

> with(Student[Calculus1]):
 f := sin(x):
 a := 0:
 b := 5:
 n := 5:

Regardless of the method used, we can always find the area to higher precision by shrinking the partition. *Click the image below and click the play button in the toolbar above to play an animation.*

Rectangular Approximations

]);

The first three methods approximate the area under the curve by using rectangles. The height is determined by where we pick a sample point.

Left Endpoints The sample point is chosen as the left endpoint of each subinterval. > # gives the series we will be computing for N subintervals ApproximateInt(f, x=a..b, method = left, partition = N); $\frac{5\left(\sum_{i=0}^{N-1}\sin\left(\frac{5\,i}{N}\right)\right)}{N}$ (1.1.1)> # gives the approximate integral using n subintervals left_approx := ApproximateInt(f, x=a..b, method = left, partition = n); evalf(left_approx); $left_approx := \sin(1) + \sin(2) + \sin(3) + \sin(4)$ 1.135085925 (1.1.2)> # plots the function and the approximating rectangles for the given method ApproximateInt(f, x=a..b, method = left, partition = n, output = plot, pointoptions=[symbolsize=20,symbol= solidcircle], boxoptions=[filled=[color=pink,transparency=.5]

0.1363319363 0.1430835619 0.0017092847 0.0033758128 0.00001425209

Homework

This is an extension of 5.9 #17. DO NOT USE ApproximateInt UNLESS TOLD TO DO SO. Part (a) - (g) should be done as if you were writing them on a sheet of paper. We are simply using Maple to help us do the messy computations. Be sure to execute the commands below. > with(Student[Calculus1]): $f := cos(x^2):$ a := 0: b := 1: n := 4: dx := (b-a)/n:exact := $int(cos(x^2), x=0..1)$: (a) Write out the approximation L_4 for $\int_0^1 \cos(x^2) dx$ by hand. Give the exact value for L_4 and use evalf to give a decimal approximation for L_4 . Assign the exact answer for L_4 to the variable 14. > # define the subinterval endpoints x0 := 0/4:x1 := 1/4: x2 := 2/4: x3 := 3/4: # write out L4 "by hand" and assign it to the variable L4 $L4 := dx * (\cos(x0^2) + \cos(x1^2) + \cos(x2^2) + \cos(x3^2));$ # give the decimal approximation evalf(L4); $L4 := \frac{1}{4} + \frac{1}{4} \cos\left(\frac{1}{16}\right) + \frac{1}{4} \cos\left(\frac{1}{4}\right) + \frac{1}{4} \cos\left(\frac{9}{16}\right)$ 0 9532211079 (4.1.1)

(b) Write out the approximation R_4 for $\int_0^1 \cos(x^2) dx$ by hand. Give the exact value for R_4 and use evalf to give a decimal approximation for R_4 . Assign the exact answer for R_4 to the variable R4.

(3.2)

(c) Write out the approximation M_4 for $\int_0^1 \cos(x^2) dx$ by hand. Give the exact value for M_4 and use evalf to give a decimal approximation for M_4 . Assign the exact answer for M_4 to the variable M4.

(d) Write out the approximation T_4 for $\int_0^1 \cos(x^2) dx$ by hand. Give the exact value for T_4 and use evalf to give a decimal approximation for T_4 . Assign the exact answer for T_4 to the variable T4.

(e) Write out the approximation S_4 for $\int_0^1 \cos(x^2) dx$ by hand. Give the exact value for S_4 and use evalf to give a decimal approximation for S_4 . Assign the exact answer for S_4 to the variable s4.

(f) Estimate the absolute error in approximation for part (c). Assign this value to the variable **E_M4**. Is this an overestimation or an underestimation?

This is an overestimation since the difference above is negative.

(g) Estimate the absolute error in approximation for part (d). Assign this value to the variable E_T4 . Is this an overestimation or an underestimation?

(h) Use ApproximateInt with 8 subintervals to calculate a decimal approximation M_8 for $\int_0^1 \cos(x^2) dx$. Assign your approximation to

```
the variable M8.
> M8 := evalf(ApproximateInt(f, x=a..b, method = midpoint,
                          M8 := 0.9056199570
                                                                     (4.8.1)
(i) Use ApproximateInt with 8 subintervals to calculate a decimal
approximation T_8 for \int_0^1 \cos(x^2) dx. Assign your approximation to the
variable T8.
(j) Estimate the absolute error in the approximation for part (h).
Assign this value to the variable E_{M8}.
(k) Estimate the absolute error in the approximation for part (i).
Assign this value to the variable E_{T8}.
(I) As n increases by a factor of 2, by what whole number factor do
the errors for M_n drop? Hint: Use (f) and (j).
  evalf(E_M4/E_M8);
                             3.999704943
                                                                    (4.12.1)
It decreases by a factor of 4.
(m) As n increases by a factor of 2, by what whole number factor do
the errors for T_n drop? Hint: Use (g) and (k).
```