Approximate Integration
James Rohal

First we load the necessary packages and use an example function fwith interval bound [a, b]. There will
be n subintervals.
> with (Student[Calculusl]):

f := sin(x):
a := 0:
b := 5:
n := 5:

Regardless of the method used, we can always find the area to higher precision by shrinking the

partition. Click the image below and click the play button in the toolbar above to play an animation.

> ApproximateInt(f, x=a..b, method = left, partition = n, output =
animation, pointoptions=[symbolsize=20,symbol=solidcircle],
boxoptions=[filled=[color=pink, transparency=.5]])

0.5

-0.5

5
. . o (7.
An animated left Riemann sum approximation of | f(x) dx, where
‘0

f(x) =sin(x) and the partition is uniform. The approximate value of the
integral is 1.135085925. Number of subintervals used: 5.

¥ Rectangular Approximations

The first three methods approximate the area under the curve by using rectangles. The height is
determined by where we pick a sample point.

V¥ Left Endpoints

The sample point is chosen as the left endpoint of each subinterval.
> # gives the series we will be computing for N subintervals
Approximatelnt(f, x=a..b, method = left, partition = N);

s[San(30)

> # gives the approximate integral using n subintervals
left_approx :-= Approximatelnt(f, x=a..b, method = left,
partition = n);
evalf(left_approx);
left_approx :=sin(1) +sin(2) +sin(3) +sin(4)
1.135085925 (1.1.2)

> # plots the function and the approximating rectangles for the
given method
Approximatelnt(f, x=a..b, method = left, partition = n,
output = plot, pointoptions=[symbolsize=20,symbol=
solidcircle], boxoptions=[filled=[color=pink, transparency=.5]

D:

(1.1.1)

0.5

-0.5

5
A left Riemann sum approximation of | f(x) dx, where f(x) =sin(x)
0
and the partition is uniform. The approximate value of the integral is
1.135085925. Number of subintervals used: 5.

¥ Right Endpoints

The sample point is chosen as the right endpoint of each subinterval.

> ApproximateInt(f, x=a..b, method = right, partition = N);

N
5 [Zsin(ﬂ)
=l 5 N (1.2.1)

=> right approx := ApproximatelInt(f, x=a..b, method = right,
partition = n);

evalf (right_approx) ;
right_approx :==sin(1) +sin(2) +sin(3) + sin(4) +sin(5)
| 0.1761616503
B ApproximateInt(f, x=a..b, method = right, partition = n,
output = plot, pointoptions=[symbolsize=20,symbol=
solidcircle], boxoptions=[filled=[color=pink, transparency=.5]

1)

(1.2.2)

0.5

-0.5

5
A right Riemann sum approximation of | f(x) dx, where f(x) =sin(x)
0
and the partition is uniform. The approximate value of the integral is
0.1761616503. Number of subintervals used: 5.

¥ Midpoint Rule

The sample point is chosen as the midpoint of each subinterval.
> ApproximateInt(f, x=a..b, method = midpoint, partition

= N);
N—1 (1)
S5li+
5 Z sin - _2)
=0 N (1.3.1)
] N 3.
[> mid approx := ApproximateInt(f, x=a..b, method = midpoint,

partition = n);
evalf (mid approx) ;

mid_approx == sin[%] +sin(%] +sin(%] +sin(%] +sin(%]

| 0.7470793233

[> ApproximateInt(f, x=a..b, method = midpoint, partition
output = plot, pointoptions=[symbolsize=20,symbol=

solidcircle], boxoptions=[filled=[color=pink, transparency=.5]

1)

(1.3.2)

=n’

0.5

-0.5

5
A midpoint Riemann sum approximation of ‘ f(x) dx, where
‘0

JS(x) =sin(x) and the partition is uniform. The approximate value of the
integral is 0.7470793233. Number of subintervals used: 5.

¥ Non-Rectangular Approximations

V¥ Trapezoid Rule
> ApproximateInt(f, x=a..b, method = trapezoid, partition = N);
N—1
S (sn(31 +sin(2211
LA E i L @.1.1)
2 N o

M> trap approx := Approximatelnt(f, x=a..b, method = trapezoid,
partition = n);
evalf (trap_approx) ;

trap_approx :=sin(1) +sin(2) +sin(3) +sin(4) + % sin(5)

0.6556237876 (2.1.2)

=5 ApproximateInt(f, x=a..b, method = trapezoid, partition = n,
output = plot, boxoptions=[filled=[color=pink, transparency=

\ 4

-511) 7

1 e
0.5
0
| 2 3 b
X
-0.5
-1 S

5
An approximation of | f(x) dxusing trapezoid rule, where f(x) =sin(x)
Jo
and the partition is uniform. The approximate value of the integral is
0.6556237871. Number of subintervals used: 5.

Simpson's Rule
[> ApproximateInt (£, x=a..b, method = simpson, partition = N);

1
o s (i+4) |
S ;%[ﬁn[%éJ-+4mn ———Erg—- +sm[§4%$il]]
" 5 (2.2.1)

> # I had to use 6 subintervals here rather than 5. This is
because n must be even to use Simpson's rule
simp approx := ApproximateInt(f, x=a..b, method = simpson,
partition = 6);
evalf (simp_ approx) ;
simp_approx == =, sin(i] i sin(—]
TERSERE 9 12
- T & = .
C pie ||| Bp—
9 sm(2) 13 sm(

P & 5 25 5 . (85 5 .
+9sm(4)—l— T sm(6 J-I-gsm[12)+36 sin(5)

0.7164602895 (2.2.2)

=> ApproximateInt(f, x=a..b, method = simpson, partition = 6,
output = plot, boxoptions=[filled=[color=pink, transparency=

-511)

0.5

-0.5

5
An approximation of | f(x) dx using Simpson's rule, where
0
f(x) =sin(x) and the partition is uniform. The approximate value of the
integral is 0.7164602897. Number of subintervals used: 6.

VY Absolute Error

First we need the exact area.
> exact := int(f, x=a..b);
evalf (exact) ;
exact =1 —cos(6)
0.0398297133 3.1)

The absolute error is abs (exact_solution - approximate solution).
> evalf (abs (exact - left approx));

evalf (abs (exact - right_ approx));

evalf (abs (exact - mid_approx)) ;

evalf (abs (exact - trap approx));

evalf (abs (exact - simp_approx)) ;

0.1363319363
0.1430835619
0.0017092847
0.0033758128
0.00001425209 3.2)

Y Homework

This is an extension of 5.9 #17. DO NOT USE Approximate Int UNLESS TOLD TO DO SO.
Part (a) - (g) should be done as if you were writing them on a sheet of paper. We are simply using

Maple to help us do the messy computations. Be sure to execute the commands below.
> with(Student[Calculusl]):
f -

= cos(x"2):
a := 0:
b :=1:
n = 4:
dx := (b-a)/n:
exact := Int(cos(x™2), x=0..1):

1

2
V¥ (a) Write out the approximation L . for J cos(x) dx by hand. Give
0
the exact value for L, and use evalf to give a decimal approximation

for L. Assign the exact answer for L, to the variable L4.
[> # define the subinterval endpoints

X0 = 0/4:
x1 = 1/4:
X2 = 2/4:
X3 = 3/4:

write out L4 "by hand™ and assign it to the variable L4
L4 = dx * (cos(x0™2) + cos(x1™2) + cos(x2"2) + cos(x3™2));

give the decimal approximation

evalf(L4);
1 1 Ay, 1 1y, 1 9
L4 : 4+4cos(16j+4cos(4)+4cos(l6)
0.9532211079 4.1.1)

1

V¥ (b) Write out the approximation R, forJ cos(x*) dx by hand. Give the

0
exact value for R, and use evalf to give a decimal approximation for

R,. Assign the exact answer for R, to the variable Rr4.

1

V¥ (c) Write out the approximation v, forJ cos(x*) dx by hand. Give the

0
exact value for M, and use evalf to give a decimal approximation for

M,. Assign the exact answer for M, to the variable v4.

1

V¥ (d) Write out the approximation T, for J cos(x*) dx by hand. Give the

0
exact value for 7, and use evalf to give a decimal approximation for

T,. Assign the exact answer for T, to the variable T4.

1

V¥ (e) Write out the approximation s, for J cos(x*) dx by hand. Give the

0
exact value for s, and use evalf to give a decimal approximation for

s,- Assign the exact answer for s, to the variable s4.

V¥ (f) Estimate the absolute error in approximation for part (c). Assign
this value to the variable E_v4. Is this an overestimation or an

underestimation?
> E M4 = abs(exact - M4):
evalft(E_M4);
0.0043825527 (4.6.1)

> evalf(exact - M4);
-0.0043825527 (4.6.2)

This is an overestimation since the difference above is negative.

V¥ (g) Estimate the absolute error in approximation for part (d). Assign
this value to the variable E_T4. Is this an overestimation or an
underestimation?

V¥ (h) Use Approximateint with 8 subintervals to calculate a decimal
1

. . 2 . . .
approximation M q for J cos(x) dx. Assign your approximation to
0

the variable vs.

> M8 := evalf(Approximatelnt(f, x=a..b, method = midpoint,
partition = 8));

M8 :=0.9056199570 4.8.1)

V¥ (i) Use Approximatelnt with 8 subintervals to calculate a decimal

2
approximation T8 forJ cos(x) dx. Assign your approximation to the
0
variable Ts.

V¥ (j) Estimate the absolute error in the approximation for part (h).
Assign this value to the variable E_vs.

V¥ (k) Estimate the absolute error in the approximation for part (i).
Assign this value to the variable E_Ts.

¥ () As nincreases by a factor of 2, by what whole number factor do
the errors for Mn drop? Hint: Use (f) and (j).

> evalT(E_M4/E_M8);
3.999704943 4.12.1)
It decreases by a factor of 4.

¥ (m) As nincreases by a factor of 2, by what whole number factor do
the errors for Tn drop? Hint: Use (g) and (k).

