
Approximate Integration
Your Name Goes Here

Introduction
The goal of this notebook is to introduce you to the process of computing intergrals numerically in 
Mathematica. We will introduce you to the NIntegrate command, which will allow you to compute 
integrals approximately. We then provide methods for computing approximations that were discussed in 
class such as left/right/midpoint Riemann sum approximiations, Trapezoid approximations, and Simpson 
approximations.

Execute This Cell Before Beginning
Evaluate the cell below every time you begin working on this notebook. It initializes certain commands 
that you will be using. You do not need to understand the commands in this section.

LeftRiemannSum[f_, {var_, a_, b_}, n_] := Module{dx, heights, Ln},

dx =
b - a

n
;

heights = Most@Table[f /. var → xi, {xi, a, b, dx}];

Ln = dx * Total@heights;

Return[Ln];



RightRiemannSum[f_, {var_, a_, b_}, n_] := Module{dx, heights, Rn},

dx =
b - a

n
;

heights = Rest@Table[f /. var → xi, {xi, a, b, dx}];

Rn = dx * Total@heights;

Return[Rn];



MidpointRiemannSum[f_, {var_, a_, b_}, n_] := Module{dx, heights, Mn},

dx =
b - a

n
;

heights = Tablef /. var →
xi + (xi + dx)

2
, {xi, a, b - dx, dx};

Mn = dx * Total@heights;

Return[Mn];







TrapezoidSum[f_, {var_, a_, b_}, n_] := Module{dx, heights, Tn},

dx =
b - a

n
;

heights = Table[f /. var → xi, {xi, a, b, dx}];

Tn =
dx

2
* Sum[heights〚i〛 + heights〚i + 1〛, {i, n}];

Return[Tn];



SimpsonSum[f_, {var_, a_, b_}, n_] := Module{dx, heights, Sn, coefficient},

dx =
b - a

n
;

coefficient[i_?EvenQ] := 4;

coefficient[i_?OddQ] := 2;

heights = Table[f /. var → xi, {xi, a, b, dx}];

Sn =

dx

3
* (heights〚1〛 + Sum[coefficient[i] * heights〚i〛, {i, 2, n}] + heights〚n + 1〛);

Return[Sn];



DrawLeftRiemannSum[f_, {var_, a_, b_}, n_] := Module{fplot, deltax, rectangles},

deltax =
b - a

n
;

fplot = Plot[f, {var, a, b},

FrameTicks →

{{Table[{f /. var → (a + i deltax), Style[f /. var → (a + i deltax), Gray]},

{i, 0, n}], None}, {Table[a + i deltax, {i, 0, n}], None}},

Frame → {{True, False}, {True, False}},

Axes → None, PlotStyle → Directive[Black, Thick]];

rectangles = Table[Rectangle[{a + i deltax, 0},

{a + (i + 1) deltax, f /. var -> a + i deltax}], {i, 0, n - 1}];

Show[fplot, Graphics[{LightBlue, EdgeForm[Gray], rectangles}], fplot]



DrawRightRiemannSum[f_, {var_, a_, b_}, n_] := Module{fplot, deltax, rectangles},

deltax =
b - a

n
;

fplot = Plot[f, {var, a, b},

FrameTicks →

{{Table[{f /. var → (a + i deltax), Style[f /. var → (a + i deltax), Gray]},

{i, 0, n}], None}, {Table[a + i deltax, {i, 0, n}], None}},

Frame → {{True, False}, {True, False}},
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Axes → None, PlotStyle → Directive[Black, Thick]];

rectangles = Table[Rectangle[{a + i deltax, 0},

{a + (i + 1) deltax, f /. var -> a + (i + 1) deltax}], {i, 0, n - 1}];

Show[fplot, Graphics[{LightBlue, EdgeForm[Gray], rectangles}], fplot]



DrawMidpointRiemannSum[f_, {var_, a_, b_}, n_] :=

Module{fplot, deltax, rectangles},

deltax =
b - a

n
;

fplot = Plotf, {var, a, b},

FrameTicks →

Tablef /. var → a + i +
1

2
deltax , Stylef /. var → a + i +

1

2
deltax ,

Gray, {i, 0, n}, None, {Table[a + i deltax, {i, 0, n}], None},

Frame → {{True, False}, {True, False}},

Axes → None, PlotStyle → Directive[Black, Thick];

rectangles = TableRectangle{a + i deltax, 0},

a + (i + 1) deltax, f /. var → a + i +
1

2
deltax, {i, 0, n - 1};

Show[fplot, Graphics[{LightBlue, EdgeForm[Gray], rectangles}], fplot]



DrawTrapezoidSum[f_, {var_, a_, b_}, n_] := Module{fplot, deltax, trapezoids},

deltax =
b - a

n
;

fplot = Plot[f, {var, a, b},

FrameTicks →

{{Table[{f /. var → (a + i deltax), Style[f /. var → (a + i deltax), Gray]},

{i, 0, n}], None}, {Table[a + i deltax, {i, 0, n}], None}},

Frame → {{True, False}, {True, False}},

Axes → None, PlotStyle → Directive[Black, Thick]];

trapezoids = Table[

Polygon[{{a + i deltax, 0}, {a + i deltax, f /. var → a + i deltax}, {a + (i + 1) deltax,

f /. var → a + (i + 1) deltax}, {a + (i + 1) deltax, 0}}], {i, 0, n - 1}];

Show[fplot, Graphics[{LightBlue, EdgeForm[Gray], trapezoids}], fplot]



DrawSimpsonSum[f_, {var_, a_, b_}, n_] :=

Module{fplot, deltax, i, a2, a1, a0, coefficients, parabola, parabolaplots,

verticallines, x0, y0, x1, y1, x2, y2, eqn1, eqn2, eqn3, solns},

deltax =
b - a

n
;
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fplot = Plot[f, {var, a, b},

FrameTicks →

{{Table[{f /. var → (a + i deltax), Style[f /. var → (a + i deltax), Gray]},

{i, 0, n}], None}, {Table[a + i deltax, {i, 0, n}], None}},

Frame → {{True, False}, {True, False}},

Axes → None, PlotStyle → Directive[Black, Thick]];

parabolaplots = {};

verticallines = {};

Fori = 0, i < n, i = i + 2,

x0 = a + i deltax;

y0 = f /. var → x0;

x1 = a + (i + 1) deltax;

y1 = f /. var → x1;

x2 = a + (i + 2) deltax;

y2 = f /. var → x2;

eqn1 = y0 ⩵ a2 x2 + a1 x + a0 /. x → x0;

eqn2 = y1 == a2 x2 + a1 x + a0 /. x → x1;

eqn3 = y2 == a2 x2 + a1 x + a0 /. x → x2;

solns = First@Solve[{eqn1, eqn2, eqn3}, {a2, a1, a0}];

parabola = a2 x2 + a1 x + a0 /. solns;

AppendTo[parabolaplots, Plot[parabola, {x, x0, x2},

PlotStyle → Gray, Filling → 0, FillingStyle → LightBlue]];

AppendTo[verticallines, Line[{{x0, 0}, {x0, y0}}]];

AppendTo[verticallines, Line[{{x2, 0}, {x2, y2}}]];

;

Show[fplot, parabolaplots,

Graphics[{Gray, Thickness[0.001], verticallines}], fplot]



Mathematica Commands

NIntegrate

To compute integrals numerically in Mathematica, we use the NIntegrate command. NIntegrate[f, 

{x, a, b}] gives an approxmation of the definite integral ∫
a

b
f dx. For example, ∫0

π
sin(x) dx can be 

computed as:

NIntegrate[Sin[x], {x, 0, Pi}]

2.

Notice the output is 2. (two with a decimal) as opposed to 2 (two without a decimal). This is done to 
indicate the answer is an approximate answer. 

Mathematica by default uses a “global adaptive” strategy when computing the numerical approximation 
of an integral via NIntegrate. We have built several functions to compute the numerical approxima-
tions we have done in class.
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Computing Ln

To compute Ln, the Riemann sum with n subintervals using left end points, for the integral ∫
a

b
f dx, we 

use LeftRiemannSum[f, {x, a, b}, n]. For example, to compute L4 for the integral ∫0

π
sin(x) dx: 

LeftRiemannSum[Sin[x], {x, 0, Pi}, 4]

1

4
1 + 2  π

Let’s think about for a moment how to compute this by hand so we can check our answer. First we 
define a, b, n, Δx and the integrand function f (x):

a = 0;

b = Pi;

n = 4;

deltax = (b - a) / n;

f[x_] := Sin[x];

We then need to split the interval [0, π ] in to 4 subintervals. To quickly do this we can use the Range 
command. Range[start, end, dx] gives all the numbers between start and end taking steps of 

dx. For example, to get all the numbers between 0 and π  taking steps of π
4

 (which is our Δx), we do:

Range[0, Pi, deltax]

0,
π

4
,

π

2
,
3 π

4
, π

From the above we see the four subintervals are [0, π /4], [π /4, π /2], [π /2, 3π /4], [3π /4, π ]. To 
compute the left sum approximation, we use the four left endpoints of our four subintervals:

deltax * (f[0] + f[Pi / 4] + f[Pi / 2] + f[3 Pi / 4])

1

4
1 + 2  π

To draw the corresponding rectangles, you can use the DrawLeftRiemannSum command. It works just 
like the LeftRiemannSum command:
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DrawLeftRiemannSum[Sin[x], {x, 0, Pi}, 4]

0 π

4

π

2

3π

4

π

0

1

2

1

1

2

0

Computing Rn

To compute Rn, the Riemann sum with n subintervals using right end points, for the integral ∫
a

b
f dx, we 

use RightRiemannSum[f, {x, a, b}, n]. For example, to compute R4 for the integral ∫0

π
sin(x) dx: 

RightRiemannSum[Sin[x], {x, 0, Pi}, 4]

1

4
1 + 2  π

Let’s think about for a moment how to compute this by hand so we can check our answer. First we 
define a, b, n, Δx and the integrand function f (x):

a = 0;

b = Pi;

n = 4;

deltax = (b - a) / n;

f[x_] := Sin[x];

We then need to split the interval [0, π ] in to 4 subintervals. To quickly do this we can use the Range 
command. Range[start, end, dx] gives all the numbers between start and end taking steps of 

dx. For example, to get all the numbers between 0 and π  taking steps of π
4

 (which is our Δx), we do:

Range[0, Pi, deltax]

0,
π

4
,

π

2
,
3 π

4
, π

From the above we see the four subintervals are [0, π /4], [π /4, π /2], [π /2, 3π /4], [3π /4, π ]. To 
compute the right sum approximation, we use the four right endpoints of our four subintervals:

deltax * (f[Pi / 4] + f[Pi / 2] + f[3 Pi / 4] + f[Pi])

1

4
1 + 2  π

To draw the corresponding rectangles, you can use the DrawRightRiemannSum command. It works just 
like the RightRiemannSum command:
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DrawRightRiemannSum[Sin[x], {x, 0, Pi}, 4]

0 π

4

π

2

3π

4

π

0

1

2

1

1

2

0

Computing Mn

To compute Mn, the Riemann sum with n subintervals using midpoints, for the integral ∫
a

b
f dx, we use 

MidpointRiemannSum[f, {x, a, b}, n]. For example, to compute M4 for the integral ∫0

π
sin(x) dx: 

MidpointRiemannSum[Sin[x], {x, 0, Pi}, 4]

1

4
π 2 Cos

π

8
 + 2 Sin

π

8


Let’s think about for a moment how to compute this by hand so we can check our answer. First we 
define a, b, n, Δx and the integrand function f (x):

a = 0;

b = Pi;

n = 4;

deltax = (b - a) / n;

f[x_] := Sin[x];

We then need to split the interval [0, π ] in to 4 subintervals. To quickly do this we can use the Range 
command. Range[start, end, dx] gives all the numbers between start and end taking steps of 

dx. For example, to get all the numbers between 0 and π  taking steps of π
4

 (which is our Δx), we do:

Range[0, Pi, deltax]

0,
π

4
,

π

2
,
3 π

4
, π

From the above we see the four subintervals are [0, π /4], [π /4, π /2], [π /2, 3π /4], [3π /4, π ]. To 
compute the midpoint sum approximation, we use the four midpoints of our four subintervals. I will label 
these as midpoint1, midpoint2, midpoint3, and midpoint4 for ease of presentation:
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midpoint1 = (0 + Pi / 4) / 2;

midpoint2 = (Pi / 4 + Pi / 2) / 2;

midpoint3 = (Pi / 2 + 3 Pi / 4) / 2;

midpoint4 = (3 Pi / 4 + Pi) / 2;

deltax * (f[midpoint1] + f[midpoint2] + f[midpoint3] + f[midpoint4])

1

4
π 2 Cos

π

8
 + 2 Sin

π

8


To draw the corresponding rectangles, you can use the DrawMidpointRiemannSum command. It works 
just like the MidpointRiemannSum command:

DrawMidpointRiemannSum[Sin[x], {x, 0, Pi}, 4]

0 π

4

π

2

3π

4

π

sin
π

8


cos
π

8
cos

π

8


sin
π

8


Computing Tn

To compute Tn, the approximiation to the integral ∫
a

b
f dx using n trapezoids, we use TrapezoidSum[f, 

{x, a, b}, n]. For example, to compute T4 for the integral ∫0

π
sin(x) dx: 

TrapezoidSum[Sin[x], {x, 0, Pi}, 4]

1

8
2 + 2 2  π

Let’s think about for a moment how to compute this by hand so we can check our answer. First we 
define a, b, n, Δx and the integrand function f (x):

a = 0;

b = Pi;

n = 4;

deltax = (b - a) / n;

f[x_] := Sin[x];

We then need to split the interval [0, π ] in to 4 subintervals. To quickly do this we can use the Range 
command. Range[start, end, dx] gives all the numbers between start and end taking steps of 

dx. For example, to get all the numbers between 0 and π  taking steps of π
4

 (which is our Δx), we do:
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Range[0, Pi, deltax]

0,
π

4
,

π

2
,
3 π

4
, π

From the above we see the four subintervals are [0, π /4], [π /4, π /2], [π /2, 3π /4], [3π /4, π ]. To 
compute the trapezoid sum approximation, we calculate the area of each trapezoid using the endpoints 
of each subinterval:

areaOfTrapezoid1 = (1 / 2) * deltax * (f[0] + f[Pi / 4]);

areaOfTrapezoid2 = (1 / 2) * deltax * (f[Pi / 4] + f[Pi / 2]);

areaOfTrapezoid3 = (1 / 2) * deltax * (f[Pi / 2] + f[3 Pi / 4]);

areaOfTrapezoid4 = (1 / 2) * deltax * (f[3 Pi / 4] + f[Pi]);

areaOfTrapezoid1 + areaOfTrapezoid2 + areaOfTrapezoid3 + areaOfTrapezoid4

π

4 2
+
1

4
1 +

1

2
π

Alternatively, we can use the trapezoid rule formula where the coefficient order is {1, 2, ...., 2, 1}:

deltax / 2 * (f[0] + 2 * f[Pi / 4] + 2 * f[Pi / 2] + 2 * f[3 Pi / 4] + f[Pi])

1

8
2 + 2 2  π

These answers are identical although they are written differently. You can check by using the N com-
mand to compute a decimal approximation. To draw the corresponding trapezoids, you can use the 
DrawTrapezoidSum command. It works just like the TrapezoidSum command:

DrawTrapezoidSum[Sin[x], {x, 0, Pi}, 4]

0 π

4

π

2

3π

4

π

0

1

2

1

1

2

0

Computing Sn

To compute Sn, the approximiation to the integral ∫
a

b
f dx using Simpson’s rule with n subintervals (where 

n is even), we use SimpsonSum[f, {x, a, b}, n]. For example, to compute S4 for the integral 

∫0

π
sin(x) dx: 
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SimpsonSum[Sin[x], {x, 0, Pi}, 4]

1

12
2 + 4 2  π

Let’s think about for a moment how to compute this by hand so we can check our answer. First we 
define a, b, n, Δx and the integrand function f (x):

a = 0;

b = Pi;

n = 4;

deltax = (b - a) / n;

f[x_] := Sin[x];

We then need to split the interval [0, π ] in to 4 subintervals. To quickly do this we can use the Range 
command. Range[start, end, dx] gives all the numbers between start and end taking steps of 

dx. For example, to get all the numbers between 0 and π  taking steps of π
4

 (which is our Δx), we do:

Range[0, Pi, deltax]

0,
π

4
,

π

2
,
3 π

4
, π

From the above we see the four subintervals are [0, π /4], [π /4, π /2], [π /2, 3π /4], [3π /4, π ]. To 
compute the Simpson sum approximation, we use the Simpson’s rule formula where the coefficient 
order is {1, 4, 2, 4, ...., 4, 2, 4, 1}:

deltax / 3 * (f[0] + 4 * f[Pi / 4] + 2 * f[Pi / 2] + 4 * f[3 Pi / 4] + f[Pi])

1

12
4 + 2 2  π

To draw the corresponding approximating parabolas, you can use the DrawSimpsonSum command. It 
works just like the SimpsonSum command:

DrawSimpsonSum[Sin[x], {x, 0, Pi}, 4]

0 π

4

π

2

3π

4

π

0

1

2

1

1

2

0

Computing Error

To compute the (absolute) error, we compute error = exact - approximate . For example, to compute 
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ET4
, the error in using the trapezoid sum approximation for the integral ∫0

π
sin(x) dx:

exact = Integrate[Sin[x], {x, 0, Pi}];

approximate = TrapezoidSum[Sin[x], {x, 0, Pi}, 4];

error = N[Abs[exact - approximate]]

0.103881

Note that we used the N command to get a decimal approximation of the error. As we increase n, we 

expect the error to decrease.

exact = Integrate[Sin[x], {x, 0, Pi}];

approximate = TrapezoidSum[Sin[x], {x, 0, Pi}, 100];

error = N[Abs[exact - approximate]]

0.000164496

Problems
We will observe that Mathematica helps us perform these approximate integrations to high degees of 
accuracy.

(a) Compute the left Riemann sum approximation using 10 rectangles for 

∫0

1
cosx2 dx. Plot the approximating rectangles.

(b) Compute the right Riemann sum approximation using 10 rectangles for 

∫0

1
cosx2 dx. Plot the approximating rectangles.

(c) Compute the midpoint Riemann sum approximation using 10 

rectangles for ∫0

1
cosx2 dx. Plot the approximating rectangles.

(d) Compute the trapezoid sum approximation using 10 rectangles for 

∫0

1
cosx2 dx. Plot the approximating trapezoids.

(e) Compute the Simpson sum approximation using 10 rectangles for 

∫0

1
cosx2 dx. Plot the approximating parabolas.

(f) Estimate the absolute error in approximation for part (a). Is this an 
overestimation or an underestimation?

Answer: 
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(g) Estimate the absolute error in approximation for part (b). Is this an 
overestimation or an underestimation?

Answer: 

(h) Estimate the absolute error in approximation for part (c). Is this an 
overestimation or an underestimation?

Answer: 

(i) Estimate the absolute error in approximation for part (d). Is this an 
overestimation or an underestimation?

Answer: 

(j) Estimate the absolute error in approximation for part (e). Is this an 
overestimation or an underestimation?

Answer: 

(k) Use Theorem 5.20 (pp. 351) to determine a value of n such that the 

Trapezoidal Rule will aproximate the value of ∫0

1
cosx2 dx with an error 

that is less than 0.000001. Use the fact that f '' (x) ≤ 6.

Answer: 

(l) What is the smallest value of n such that the Trapezoidal Rule will 

aproximate the value of ∫0

1
cosx2 dx with an error that is less than 

0.000001?

Answer: 
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