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Abstract

We construct self-similar fractal tilings on rationally graded nilpotent
Lie groups. Specific examples and graphs of fractal tilings in the Heisen-
berg group are given
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1 Introduction

We are all familiar with tilings; we see them every day on the kitchen floor or
on a chess board. Intuitively, we consider a given design a “tiling” if it has
a few specific characteristics: it must break the larger set into a collection of
smaller sets, which cover the entire set with no gaps and no overlap. We can
define this intuitive notion of tiling more rigorously by saying that a “tiling” of a
complete metric space X (such as the kitchen floor) is a locally finite collection
T of non-empty subsets of X (in other words, if you draw a small enough circle
around any point on the kitchen floor, it will intersect only finitely many tiles),
that fulfulls the following three conditions:

1. For any A ∈ T , cl (int A) = A (the tiles are nice solid spaces, not just
collections of scattered points).

2. For any discrete A,B ∈ T , intA ∩ intB = ∅ (they don’t overlap).

3. ∪A = X (they cover the whole space).

Most tilings found on floors or game boards are also “self-similar”. A self-
similar tiling, intuitively, has the additional characteristic that if you group
together several tiles, you can create a larger set with the same shape. For
example, four squares on a chess board make up a larger square.

We can extend this mathematical notion of tiling beyond the simple rect-
angular or triangular tilings found in buildings or board games. For example,
we can create tilings of the plane R2, where each tile has a fractal boundary.
Figure 1 is one such tiling of R2, the fractal cross.

In this paper, we generalize these fractal tilings to spaces other than Eu-
clidean space, Rn. Specifically, we generalize a theorem on Rn concerning self-
similar tilings [2] to apply to any nilpotent Lie group. This theorem guarantees
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Figure 1: The fractal cross

that given an expansive automorphism that preserves some lattice, we can con-
struct a self-similar tile. Once we have this result for all nilpotent Lie groups, we
examine the Heisenberg group, a specific example. In the Heisenberg group, we
can describe precisely the form of all automorphisms, and in particular we can
describe all automorphisms with the property of being an expansive map. We
also classify all lattices in the three-dimensional Heisenberg group, which allows
us to construct specific examples of self-similar tilings on this group, which can
be represented as plots in R3. Examples of such tilings were done earlier by
Gelbrich [3] and Strichartz [6]. These tilings fulfill the three conditions listed
above, and also have fractal boundary. We also present examples of another
technique for “lifting” tilings of the plane into the Heisenberg group, which is
not restricted to automorphisms of the Heisenberg group (and hence does not
guarantee that the “lifted” sets will create a tiling in the Heisenberg group).

It is natural to generalize tilings to nilpotent Lie groups because they are a
class of groups on which we can find a metric, an automorphic dilation structure,
discrete cocompact subgroups, and a measure, all of which are needed for our
notion of tiling. Possible further generalizations and further explorations of
the characteristics of these tilings of nilpotent Lie groups will be discussed in a
concluding section.

2 Nilpotent Lie Groups

Before presenting the extension of self-similar tiling to the class of nilpotent Lie
groups, we will define this class and discuss briefly why it is natural to extend
the notion of tiling to these groups.

Definition 2.1. Let G be a group, and let A0, A1, A2, . . . be a sequence of
groups with A0 = G and Ai+1 = [G, Ai] equals the group generated by{
gag−1a−1 : g ∈ G, a ∈ Ai

}
. G is nilpotent if for some n, An is trivial.

For example, the group of n × n upper triangular matrices with 1s on the
diagonal is a nilpotent group. Any abelian group will also clearly be nilpotent,
since if G is abelian then [G, G] = A1 is trivial. We look at nilpotent Lie groups
in particular because Lie groups are smooth manifolds, giving nice topological
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properties. In addition, in nilpotent Lie groups we have a group structure that
generalizes translations and dilations, and we can find a metric to give us a
notion of contraction and expansion maps.

We can characterize a nilpotent Lie group G as G = Rn1 × Rn2 × · · · × Rnr

with x ∈ G written as x = {xij : 1 ≤ i ≤ r, 1 ≤ j ≤ ni}, with the group law

(x ∗ x′)ij = xij + x′ij + Fij (x, x′) (2.2)

where Fij is some polynomial in x1, . . . , xi−1, x
′
1, . . . , x

′
i−1. We also require that

these polynomials behave well with a notion of dilation. We define a dilation
δt, t ∈ R as

(δtx)ij = tixij (2.3)

and we require
Fij (δtx, δtx

′) = tiFij (x, x′) .

and then these dilations act as automorphisms on G. Not all such collections of
polynomials will give a group, but all the groups we will be looking at can be
written in this form [6].

As an example, consider the group of 4 × 4 upper triangular matrices with
1s on the diagonal. This is a group under matrix multiplication. We can think
of any element M of this group as

M =


1 x11 x21 x31

0 1 x12 x22

0 0 1 x13

0 0 0 1

 .

The group law is then
1 x11 x21 x31

0 1 x12 x22

0 0 1 x13

0 0 0 1




1 x′11 x′21 x′31
0 1 x′12 x′22
0 0 1 x′13
0 0 0 1



=


1 x11 + x′11 x21 + x′21 + x11x

′
12 x31 + x′31 + x11x

′
22 + x21x

′
13

0 1 x12 + x′12 x22 + x′22 + x12x
′
13

0 0 1 x13 + x′13
0 0 0 1

 .

We see that this group can be thought of as R3 × R2 × R with a group law as
given in (2.2). In this case we have the polynomials F1j = 0 for any appropriate
j, F21 = x11x

′
12, F22 = x12x

′
13, and F31 = x11x

′
22 + x21x

′
13. It is easy to verify

that these polynomials are compatible with dilations in the sense of (2.3).
A nilpotent Lie group G can be equipped with a right-invariant Riemannian

metric d [6].

Definition 2.4. A function Φ: G → G is a contraction map if there exists an
r ∈ R, r < 1, such that for α, β ∈ G,

d
(
Φ(α),Φ(β)

)
≤ r · d (α, β) .
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Similarly, Φ is an expansive map if there exists an r ∈ R, r > 1, such that for
α, β ∈ G,

d
(
Φ(α),Φ(β)

)
≥ r · d (α, β) .

Definition 2.5. We define a norm | · | on G by

|α| = d(0, α)

where 0 is the identity element of G.

3 Self-Similar Tilings

We now present a way of generating self-similar periodic tilings on a nilpotent
Lie group. A self-similar tiling is one composed of smaller tiles (rep tiles) of the
same size, each being the same shape as the whole. We refer to a m-rep tile
as an object that can be dissected into m smaller copies of itself. In [2], Bandt
constructs tilings with self-similar tiles in Rn from matrices of integers. We
begin by generalizing Bandt’s results to nilpotent Lie groups and later present
the Heisenberg group as a specific example.

3.1 Preliminaries

An important property of contraction mappings is how each mapping reduces
“area.” We summarize some results about measurable sets.

In this section G will denote a locally compact Hausdorff topological group.
Let Cc(G) denote the space of real-valued continuous functions on G with com-
pact support. If S is a subset of G then let χS denote the characteristic function
of S.

Suppose that µ is a measure on G. For a measurable set S,

µ(S) =
∫

G

χS dµ.

All f ∈ Cc(G) can be approximated by linear combinations of characteristic
functions of measurable sets, so µ gives us a way to define∫

G

f dµ.

Definition 3.1. If µ is a Borel measure on G, then µ is a right Haar measure
on G if for all measurable sets S ⊂ G,

µ(Sg) = µ(S), ∀g ∈ G.

Theorem 3.2 (Theorem 29C and 29D [5]). G has a Haar measure that is
unique up to a positive real multiple which is finite on compact sets.
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Lemma 3.3. Let Φ : G → G be a continuous automorphism of G and let µ be
a Haar measure on G. Then there exists ` ∈ R, ` > 0 such that

µ
(
Φ(S)

)
= ` · µ(S)

for all measurable sets S ⊂ G.

Proof. For all measurable subsets S ⊂ G, define a measure µ′ on G by µ′(S) :=
µ
(
Φ(S)

)
. From Lemma 3.2 µ′ is a positive scalar multiple of µ so

µ′(S) = µ
(
Φ(S)

)
= ` · µ(S), ` ∈ R.

Definition 3.4. For groups G, H with H ⊂ G let G/H denote the set of all
left cosets of H in G. A left coset is of the form

gH = {gh : h ∈ H}, g ∈ G.

Suppose Γ ⊂ G is a closed subgroup. Let µG and µΓ denote Haar measures
on G and Γ, respectively.

Theorem 3.5 (Theorem 33C [5]). There is a G-invariant measure µG/Γ such
that for all f ∈ Cc(G)∫

G

f dµG =
∫

G/Γ

(∫
Γ

f(xγ) dµΓ

)
dµG/Γ

where γ is our variable of integration in the inner integral and x is our variable
of integration in the outer integral.

Definition 3.6. A closed subset C of G is called a fundamental domain for the
right action of Γ on G if

G =
⋃
γ∈Γ

Cγ

and for distinct γ, γ′ ∈ Γ we have γC ∩ γ′C has measure zero.

Corollary 3.7. If C is a fundamental domain of Γ in G, then

µG(C) = µG/Γ(G/Γ)

Proof. Apply Theorem 3.5 with f = χC .

Definition 3.8. A lattice Γ ⊂ G is a cocompact discrete subgroup of G.
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3.2 Tilings

Let G be a nilpotent Lie group. Then G is a locally compact Hausdorff topolog-
ical group, and has a right-invariant Riemannian metric. Let Γ ⊂ G be a lattice
and let Φ be a continuous expansive automorphism of G such that Φ(Γ) ⊆ Γ.
Let m equal the cardinality of Γ/Φ(Γ). Fix a right Haar measure µ on G.

Definition 3.9. A family {y1, . . . , ym} ⊂ Γ is a residue system of Φ, if y1 = 0
and

Γ =
∐

{yi ∗ Φ(Γ) : i = 1, . . . ,m}.

Definition 3.10 ([4]). Define fi as fi(α) = Φ−1(α)∗yi, i = 1, . . . ,m. A compact
set A 6= ∅ is self-similar with respect to f1, . . . , fm if

A = f1(A) ∪ · · · ∪ fm(A).

Since Φ−1 is a contraction mapping, so is each fi, and with the same contrac-
tion constant. Let C denote the space of nonempty compact sets in G. Then
C is a metric space equipped with the Hausdorff metric. Define F : C → C by

F (B) = f1(B) ∪ · · · ∪ fm(B).

Hutchinson [4] proved that F is a contraction on C and therefore has a unique
fixed point:

Theorem 3.11 ([4]). Given f1, . . . , fm, there is a unique self-similar set A, and
for each compact B0 6= ∅, the sequence Bk = F (Bk−1), k = 1, 2, . . . converges
to A in C .

Proposition 3.12. There exists a fundamental domain C for the right action
of Γ on G.

Proof. Let C = {g ∈ G : ∀γ ∈ Γ, d(g, γ) ≥ d(g,0)}.

Knowing this, we present the following theorem to show m-rep tiles can be
generated from Φ.

Theorem 3.13. If Φ is a continuous expansive automorphism of G and {y1, . . . , ym}
is a residue system of Φ, then there is a unique m-rep tile A1 such that

Φ (A1) = A1 ∪ · · · ∪Am with Ai = A1 ∗ yi.

Proof. For i = 1, . . . ,m define fi as in Definition 3.10. Define F : C → C as
in Theorem 3.11. Given some compact set B0 ⊂ G then the sequence Bk =
F (Bk−1), k = 1, 2, . . . converges to a set A in C that does not depend on the
choice of B0. For i = 1, . . . ,m, let Ai = fi(A). Then

A = Φ(A1) and Ai = A1 ∗ yi.

7



We construct A starting with B0 = {0}. Thus,

B1 = F (B0) = f1(B0) ∪ · · · ∪ fm(B0) = {y1, . . . , ym}
Bk = F (Bk−1) = f1(Bk−1) ∪ · · · ∪ fm(Bk−1)

=
{
Φ−k+1 (yi1) ∗ Φ−k+2 (yi2) ∗ · · · ∗ Φ−1

(
yik−1

)
∗ yik

: i1, . . . , ik ∈ {1, . . . ,m}
}

.

Since B0 ⊆ B1 ⊆ · · · , this sequence is increasing and therefore A = cl(∪Bk).
Since A is compact, A is bounded; in other words A ⊆ Uc :=

{
y : |y| ≤ c

}
for

some c ∈ R. We must show that A has positive measure.
Claim 1. There are finitely many points, x1, . . . , xq ∈ Γ such that

Uc ⊆ A ∗ {Φ(x1), . . . ,Φ(xq)} .

Proof. Pick δ > 0 such that each u ∈ G has distance ≤ δ from Γ. For any
ε > 0, we can find k such that δ · rk−1 < ε, since r < 1. This means, by
the properties of the contraction map, that any u has a distance ≤ ε from the
lattice Φ−k+1(Γ). Since the yi form a residue system, we know that each z ∈ Γ
can be written as z = yi1 ∗ Φ(x) for some x ∈ Γ and some i1 ∈ {1, . . . ,m}.
Similarly, x = yi2 ∗ Φ(x′) for some x′ ∈ Γ and i2 ∈ {1, . . . ,m}. Therefore, we
have z = yi1 ∗ Φ(yi2) ∗ Φ2(x′). Iterating this process we have that for any k,

z = yi1 ∗ Φ (yi2) ∗ Φ2 (yi3) ∗ · · · ∗ Φk−1 (yik
) ∗ Φk (x) .

Since Φ is an automorphism, we may apply Φ−k+1 to both sides of the equality
to yield

Φ−k+1(z) = Φ−k+1(yi1) ∗ Φ−k+2 (yi2) ∗ Φ−k+3 (yi3) ∗ · · · ∗ yik
∗ Φ (x)

where Φ−k+1(yi1) ∗ Φ−k+2 (yi2) ∗ Φ−k+3 (yi3) ∗ · · · ∗ yik
∈ Bk for some k. This

implies that
Φ−k+1(Γ) = Bk ∗

⋃
{Φ(x) : x ∈ Γ} .

Intersecting both sides of this equation with the compact set Uc, we obtain a
finite set, so

Φ−k+1 (Γ) ∩Uc ⊆ Bk ∗ {Φ (x1) , . . . ,Φ (xq)} ,

where x1, . . . , xq ∈ Γ are the points for which |Φ(x)| ≤ c. Now taking the closure
of the union over k = 1, 2, . . . gives

Uc ⊆ A ∗ {Φ(x1), . . . ,Φ(xq)} .

This follows from the fact that

A = cl

(⋃
i

Bi

)
i = 1, 2, . . .

and that for every u ∈ Uc, there is some x ∈ Γ such that d
(
Φ−k+1(x), u

)
≤ ε.

Therefore, the closure of ⋃
i

(
Φ−k+1(Γ) ∩Uc

)
8



is the set Uc. This proves Claim 1.
We now verify that int(A) 6= ∅. Assume for a contradiction that int(A) = ∅.

We know that int(Uc) 6= ∅ since G is a Lie group. From Claim 1 we have that
Uc ⊆ A ∗ {Φ(x1), . . . ,Φ(xq)} which implies that Uc is a subset of a finite union
of sets with empty interior. The Baire Category Theorem implies int(Uc) = ∅
which is a contradiction. Therefore, int(A) 6= ∅.

We want to show our contraction map Φ−1 reduces measure by a factor of
m, the number of coset representatives of Γ/Φ(Γ).
Claim 2. Let Γ′ = Φ−1Γ. The expansion factor ` of Φ is equal to the index
[Γ′ : Γ].
Proof. From Proposition 3.12, we know there exists a fundamental domain C
for the right action of Γ on G. Then Φ−1(C) is a fundamental domain for Γ′.
Let S be a set of left coset representatives for Γ in Γ′. Then

C1 :=
⋃
s∈S

sΦ−1(C)

is another fundamental domain for Γ′. The union is disjoint up to measure 0.
Now,

µ(C1) =
∑
s∈S

µ
(
Φ−1(C) ∗ s

)
and since µ is right invariant, we have

µ(C1) =
∑
s∈S

µ
(
Φ−1(C)

)
= [Γ′ : Γ]µ

(
Φ−1(C)

)
= [Γ′ : Γ]`−1µ(C).

By Corollary 3.7 we know
µ(C) = µ(C1).

Therefore, [Γ′ : Γ]`−1 = 1 which implies [Γ′ : Γ] = `. This proves Claim 2.
Thus, Φ−1 reduces measure by a factor of m. Therefore, µ(Ai) = µ(A)/m

for Ai = fi(A). We know

A = F (A) = f1(A) ∪ · · · ∪ fm(A) = A1 ∪ · · · ∪Am.

Pick distinct i and j. Then

µ(A) ≤
m∑

k=1

µ(Ak)− µ(Ai ∩Aj)

so,

µ (A) + µ (Ai ∩Aj) ≤
m∑

k=1

µ (Ak) = m · µ(A)
m

= µ(A).
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This means µ (Ai ∩Aj) = 0 which implies int(Ai)∩ int(Aj) = ∅ for a particular
i 6= j. However, i and j are arbitrary, so this is true for all distinct combinations
of i, j, i 6= j. Since Φ(A1) = A and the sets A2, . . . ,Am are congruent to A1

with
Φ(A1) = A1 ∪ · · · ∪Am,

then A1 is a m-rep tile.

Definition 3.14. A finite group of S of isometries of G is a symmetry group of
Φ if ΦS = SΦ.

With Definition 3.14. we may now produce a more general extension of
Theorem 3.13 to include symmetry groups.

Theorem 3.15. Let Φ be a continuous expansive automorphism on G, let
{y1, . . . , ym} be a residue system of Φ, let s1, . . . , sm be contained in a sym-
metry group S of Φ, and suppose

Γ =
∐{

s−1
i

(
yi ∗ Φ(Γ)

)
: i = 1, . . . ,m

}
.

For i = 1, . . . ,m, define fi : G → G by fi(α) = si

(
Φ−1(α) ∗ yi

)
. Then there

exists a set A, self-similar with respect to fi that has a nonempty interior.

Proof. With a few changes to Theorem 3.13 we will be able to verify Theorem
3.15. Since Φ−1 is a contraction mapping, so is each fi, and with the same
contraction constant. Define F : C → C as in Theorem 3.11.

We know that since S is a group, and Φ−1sΦ ∈ S for s ∈ S, it follows from
s1i , . . . , sik

∈ S that sik
Φ−1sik−1Φ

−1 · · · · · si1Φ
−1 · Φk = t ∈ S. As before, we

construct the self-similar set A starting with B0 = {0}. Thus,

B1 = F (B0) = f1(B0) ∪ · · · ∪ fm(B0) = {y1, . . . , ym}
Bk = F (Bk−1) = f1(Bk−1) ∪ · · · ∪ fm(Bk−1)

=
{
sik

Φ−1 · · · · · si3Φ
−1si2Φ

−1(yi1) ∗ · · · ∗ sik
Φ−1sik−1Φ

−1(yik−2)

∗ sik
Φ−1(yik−1) ∗ yik

: i1, . . . , ik ∈ {1, . . . ,m}
}
.

Since B0 ⊆ B1 ⊆ · · · , this sequence is increasing and therefore A := cl(∪Bk)
and A is compact and A is bounded; in other words A ⊆ Uc :=

{
y : |y| ≤ c

}
for some c ∈ R. It remains to prove the following claim:
Claim 3. There are finitely many points, x1, . . . , xq ∈ Γ such that

Uc ⊆ s
(
A ∗

{
Φ(x1), . . . ,Φ(xq)

})
, s ∈ S.

Proof. Since the yi form a residue system, we know that each z ∈ Γ can be
written as z = s−1

i1

(
yi1 ∗ Φ(x)

)
= s−1

i1
(yi1) ∗ s−1

i1
Φ(x) for some x ∈ Γ. Similarly,

x = s−1
i2

(
yi2 ∗Φ(x′)

)
= s−1

i2
(yi2) ∗ s−1

i2
Φ(x′) for some x′ ∈ Γ. Therefore, we have
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z = s−1
i1

(yi1)∗s−1
i1

Φs−1
i2

(yi2)∗s−1
i1

Φs−1
i2

Φ(x′). Iterating this process we have that
for any k,

z = s−1
i1

(yi1) ∗ · · · ∗ s−1
i1

Φ · · · · · s−1
ik−1

(yik−1)

∗ s−1
i1

Φ · · · · · s−1
ik

(yik
) ∗ s−1

i1
Φs−1

i2
Φ · · · · · s−1

ik
Φ(x)

for arbitrary x ∈ Γ. Since Φ is an automorphism we may apply Φ−k+1 to both
sides to get

Φ−k+1(z) = Φ−k+1s−1
i1

(yi1) ∗ · · · ∗ Φ−k+1s−1
i1

Φ · · · · · s−1
ik−1

(yik−1)

∗ Φ−k+1s−1
i1

Φ · · · · · s−1
ik

(yik
) ∗ Φ−k+1s−1

i1
Φs−1

i2
Φ · · · · · s−1

ik
Φ(x).

For t from above we have

t−1 = Φ−k+1s−1
i1

Φs−1
i2

Φ · · · · · Φs−1
ik

which implies that

Φ−k+1(z) = t−1sik
Φ−1 · · · · · si3Φ

−1si2Φ
−1(yi1) ∗ · · · ∗ t−1sik

Φ−1(yik−1) ∗ t−1yik
∗ t−1Φ(x)

= t−1(sik
Φ−1 · · · · · si3Φ

−1si2Φ
−1(yi1) ∗ · · · ∗ sik

Φ−1(yik−1) ∗ yik
) ∗ t−1Φ(x)

= t−1(b) ∗ t−1Φ(x), with b ∈ Bk

= t−1 (b ∗ Φ(x)) .

Thus
Φ−k+1(Γ) ⊆

⋃{
t−1
(
Bk ∗ Φ(x)

)
: t ∈ S, x ∈ Γ

}
.

Now, restricting the lefthand side of the above expression to points contained
in Uc, Uc can only contain a finite number of points in Γ, so

Φ−k+1(Γ) ∩Uc ⊆
⋃{

t−1
(
Bk ∗

{
Φ (x1) , . . . ,Φ (xq)

})
: t ∈ S

}
,

where x1, . . . , xq ∈ Γ are the points for which |Φ(x)| ≤ c. Now taking the closure
of the union over k = 1, 2, . . . gives

Uc ⊆ s (A ∗ {Φ(x1), . . . ,Φ(xq)}) .

From Claim 3 we know that there are finitely many copies of s
(
A ∗ Φ(x)

)
of A which cover Uc. The proof that A has nonempty interior follows as in
Theorem 3.13

4 Heisenberg Group

4.1 Preliminaries

A nontrivial example of a stratified nilpotent Lie group is the Heisenberg group.
In order to create specific examples of tilings on the Heisenberg group, we
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first identify a general form for all automorphisms. Then we classify automor-
phisms that have the properties of being contraction maps, expansion maps,
or isometries. In what follows, we consider the group H = H2n+1 (R) ={
(x, z) : x ∈ R2n, z ∈ R

}
with the group law

(x, z) ∗ (x′, z′) = (x + x′, z + z′ + B (x,x′))

where B is a nondegenerate skew-symmetric bilinear form. We use the norm∣∣(x, z)
∣∣
H

=
(
‖x‖4 + |z|2

)1/4

, where || · || is the standard Euclidean norm on R2n

which gives us the right-invariant metric dH defined by dH (α, β) =
∣∣α ∗ β−1

∣∣
H

for any α, β ∈ H2n+1 (R).

4.2 Automorphisms

4.2.1 Properties of Automorphisms on H2n+1(R)

Theorem 4.1. Any automorphism Φ: H → H is of the form Φ
(
(x, z)

)
=

(Mx, ω (x) + az), where M ∈ GSp (2n) such that B (Mv,Mw) = aB (v,w) for
all v,w ∈ R2n, and where ω : R2n → R is a linear tranformation.

Proof. We know, by properties of automorphism, that Φ maps the center, Z,
into itself. In the case of the Heisenberg group, the center can be defined as Z =
{(0, z) : z ∈ R}. Then we can think of an automorphism on Z as represented by
simply an automorphism on R, say f(x) = ax where a ∈ R, a 6= 0. Hence, we
know that Φ

(
(0, z)

)
= (0, az) for some a. Similarly, Φ induces an automorphism

g on H/Z, where g
(
Z ∗ (x, z)

)
= Z ∗

(
Φ(x, z)

)
for any (x, z) ∈ H. Since any

coset Z ∗ (x, z) can be thought of as
{
(x, r) : r ∈ R

}
⊂ H, we can relate any

automorphism on H/Z to an automorphism on R2n, defined by an invertible
2n × 2n matrix M . Then if

[
(x, z)

]
is the equivalence class of (x, z) mod Z,

g
([

(x, z)
])

=
[
(Mx, z)

]
=
[
Φ
(
(x, z)

)]
. Then we know two things about our

automorphism:

Φ
(
(0, z)

)
= (0, az)

Φ
(
(x, z)

)
=
(
Mx, h(x, z)

)
where h(x, z) is some real number. Combining these two facts, and the fact that
Φ is an automorphism, we can focus on a function depending only on x, since

Φ
(
(x, z)

)
= Φ

(
(x, 0) ∗ (0, z)

)
= Φ

(
(x, 0)

)
∗ Φ(0, z)

=
(
Mx, h(x, 0)

)
∗ (0, az)

= (Mx, h(x, 0) + az)

=
(
Mx, h(x, z)

)
.

Hence we know that h(x, z) = h(x, 0) + az, so we restrict our attention to
the function ω(x), where h(x, z) = ω(x) + az. We now have a formula for

12



Φ
(
(x, z)

)
, but we need to know more about the function ω and the relationship

between a and M . We first look at what conditions must hold for Φ to be an
automorphism.

Using the given group law and our formula for the automorphism, we have
on one hand

Φ
(
(x, z) ∗ (x′, z′)

)
= Φ

(
(x + x′, z + z′ + B(x,x′)

)
=
(
M(x + x′), ω(x + x′) + a

(
z + z′ + B(x,x′)

))
=
(
Mx+Mx′, ω(x + x′) + az + az′ + aB(x,x′)

)
and on the other hand,

Φ
(
(x, z)

)
∗ Φ
(
(x′, z′)

)
=
(
Mx, ω(x) + az

)
∗
(
Mx′, ω(x′) + az′

)
=
(
Mx+Mx′, ω(x) + az + ω(x′) + az′ + B(Mx,Mx′)

)
.

Since these must be equal in order for us to have an automorphism, it’s clear
that we must have the relation

ω(x + x′) + aB(x,x′) = ω(x) + ω(x′) + B(Mx,Mx′);

or rearranging,

ω(x + x′) = ω(x) + ω(x′) + B(Mx,Mx′)− aB(x,x′). (4.2)

We can now begin to build an understanding of the function ω. First, we show
that ω preserves multiplication by a real scalar: ω(rx) = rω(x) for r ∈ R.
Notice that since B is a skew-symmetric bilinear form, we have the property

B(v, cv) = cB(v,v) = 0

for any scalar, c ∈ R since by definition of skew-symmetric, B(v,v) = −B(v,v)
for any vector. Hence B(v,v) = 0 for all v ∈ R2n. A simple proof by induction
shows that ω(nx) = nω(x) for any integer n. For the base case, clearly ω(1x) =
1ω(x). Now, assume ω(nx) = nω(x) is true for n. Then we have, by (4.2),

ω
(
(n + 1)x

)
= ω(nx + x)

= ω(nx) + ω(x) + B
(
M(nx),Mx

)
− aB(nx,x)

= (n + 1)ω(x).

Hence by induction, we have for all positive integers, ω(nx) = nω(x).
Now consider ω(x) = ω

(
n(x/n)

)
= nω(x/n). Dividing the left and right by

n gives us that (1/n)ω(x) = ω(x/n), for any positive integer n. Now we see
that ω

(
(m/n)x

)
= ω

(
m(x/n)

)
= mω(x/n) = (m/n)ω(x). Finally, note that we

already know that ω(0) = 0, since we know Φ
(
(0, z)

)
= (0, az). This gives us

that ω(0) = ω(x− x) = ω(x) + ω(−x) = 0, hence ω(−x) = −ω(x). So, for any
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rational number q, ω(qx) = qω(x). Since we are only interested in continuous
automorphisms, this suffices to show that

ω(rx) = rω(x)

for any r ∈ R.
We can rearrange (4.2) as follows

ω(x + x′)−
(
ω(x) + ω(x′)

)
= B(Mx,Mx′)− aB(x,x′). (4.3)

Fix x,x′ ∈ R2n. (4.3) must hold for rx, rx′, where r is an arbitrary real number.
That means that

ω(rx + rx′)−
(
ω(rx) + ω(rx′)

)
= B

(
M(rx),M(rx′)

)
− aB(rx, rx′)

r
(
ω(x + x′)−

(
ω(x) + ω(x′)

))
= r2

(
B(Mx,Mx′)− aB(x,x′)

)
.

Since this must be true for any r, we have

ω(x + x′)−
(
ω(x) + ω(x′)

)
= B(Mx,Mx′)− aB(x,x′) = 0,

for any arbitrary x,x′. Hence we now know two important things:

ω(x + x′) = ω(x) + ω(x′)
B(Mx,Mx′) = aB(x,x′).

This shows us that ω is a linear transformation, and shows the necessary rela-
tionship between M and a.

Now that we have a general form for automorphisms on the Heisenberg
group, we can begin to classify characteristics of M and ω that give certain
desired properties to the automorphism.

Corollary 4.4. For M ∈ GSp(2n) we have the relationship an = detM where
M uniquely determines a.

Proof. To see this, let the matrix A = M
(
b−1I2n

)
for some b ∈ C such that

b2 = a. Note that for any v ∈ R2n, A (bv) = M
(
b−1I2n

)
(bv) = Mv. Hence we

have

B (Mv,Mw) = B
(
A (bv) , A (bw)

)
= aB (Av, Aw) .

We already know from the properties of the automorphism that B (Mv,Mw) =
aB (v,w), hence B (Av, Aw) = B (v,w). This means that A ∈ Sp (2n), and
it’s known that all symplectic matrices have determinant 1. Hence detA =
1 = (detM)

(
det(b−1I2n)

)
= (det M)

(
b−2n

)
= a−n detM . Therefore, det M =

an.

14



4.2.2 Expansions and Contractions

Given an automorphism Φ
(
(x, z)

)
= (Mx, ω (x) + az), the inverse will be

Φ−1
(
(x, z

)
) =

(
M−1x, a−1

(
z − ω(M−1x)

))
.

In constructing tilings, it is important to understand how an automorphism
acts on the distance between two points. Given the metric we are using on the
Heisenberg group, which defines the norm, we can focus on how a transformation
acts on the norm. We can now find restrictions on M and ω that make Φ a
contraction or expansion.

Proposition 4.5. An automorphism Φ: H → H is a contraction map if and
only if Φ

(
(x, z)

)
= (Mx, az) where for some 0 < c < 1, ‖Mx‖ ≤ c ‖x‖ and

|a| ≤ c2.

Proof. Given Φ
(
(x, z)

)
= (Mx, ω (x) + az), we want(

‖Mx‖4 + |ω(x) + az|2
)1/4

≤ c
(
‖x‖4 + |z|2

)1/4 (4.6)

for some 0 < c < 1, for all (x, z) ∈ H.
First we show ω(x) = 0 for all x. Assume there exists some non-zero x

for which ω (x) 6= 0. Then fixing this x, (4.6) must hold for (x, z) replaced by
(rx, 0) where r is any non-zero real number. Hence we have(∥∥M(rx)

∥∥4 +
∣∣ω(rx)

∣∣2)1/4

≤ c
(
‖rx‖4

)1/4

r4 ‖Mx‖4 + r2
∣∣ω(x)

∣∣2 ≤ r4c4 ‖x‖4

‖Mx‖4 + r−2
∣∣ω(x)

∣∣2 ≤ c4 ‖x‖4
.

Since ω (x) 6= 0, it’s possible to choose r such that r−2
∣∣ω(x)

∣∣2 > ‖x‖4, which
clearly means this inequality does not hold. Hence, we have a contradiction, so
we must have ω (x) = 0 for any x. Then

‖Mx‖4 ≤ c4 ‖x‖4
,

so
‖Mx‖ ≤ c ‖x‖

for all x ∈ R2n. Finally, (4.6) must also hold for (0, z) for any z. Then substi-
tuting in again gives

|az|1/2 ≤ c |z|1/2

|a| ≤ c2.
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Proposition 4.7. Let Φ(x, z) = (Mx, az) be a contraction automorphism on
H. Let M be a 2n × 2n matrix with eigenvalues λi corresponding to a basis
of eigenvectors vi, i = 1, . . . , 2n. Then the contraction constant of Φ is the
maximum of the |λi|.

Proof. M has eigenvalues λ1, . . . , λ2n. From Corollary 4.4 we know an = detM ,
so if λk is the max of the eigenvalues, then a =

(
λ1 · · · · · λ2n

)1/n ≤ λ2
k. Now let

v1, . . . ,v2n be a basis of eigenvectors. Let (x, z) ∈ H . Then

|Φ(x, z)| = |(Mx, az)|

=
(
‖Mx‖4 + |az|2

)1/4

=
(
‖M(x1v1 + · · ·+ xnvn)‖4 + |az|2

)1/4

=
(
‖λ1x1v1 + · · ·+ λnxnvn‖4 + |az|2

)1/4

≤
(
‖λkx1v1 + · · ·+ λkxnvn‖4 + |λ2

kz|2
)1/4

≤ |λk|
(
‖x1v1 + · · ·+ xnvn‖4 + |z|2

)1/4

= |λk|
(
‖x‖4 + |z|2

)1/4

= |λk| |(x, z)| .

Remark. In a contraction map Φ
(
(x, z)

)
= (Mx, az), the condition that |a| ≤ c2

follows directly from the condition that ‖Mx‖ ≤ c‖x‖ and the relationship a =
(detM)1/n. From Proposition 4.7 we know that c is the maximum eigenvalue
of M , and we know that det M = an ≤ c2n. So |a| ≤ c2.

Now that we have the conditions necessary for a contraction map, it follows
easily to find the conditions necessary for an automorphism to have a contraction
map as its inverse.

Proposition 4.8. An automorphism Φ: H → H is an expansion map if and
only if Φ

(
(x, z)

)
= (Mx, az) where, for some 0 < c < 1,

∥∥M−1x
∥∥ ≤ c ‖x‖ and∣∣a−1

∣∣ ≤ c2.

Proof. Given an automorphism Φ
(
(x, z)

)
= (Mx, ω (x) + az), we know that

Φ−1
(
(x, z)

)
=
(
M−1x, a−1

(
z − ω(M−1x)

))
. Since we know the conditions

necessary for a contraction map, we know that for Φ−1 to be contracting, for
some 0 < c < 1,

∥∥M−1x
∥∥ ≤ c ‖x‖,

∣∣a−1
∣∣ ≤ c2, and −a−1ω

(
M−1x

)
= 0 for all

x ∈ R2n. This last condition means that ω (x) = 0 for all x ∈ R2n.

Finally, by a parallel proof to the proof for contraction maps, except with
the inequalities replaced by equalities, we can find a form for automorphisms
that expand or contract the norm by a constant factor.
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Proposition 4.9. An automorphism Φ: H → H has the property that
∣∣Φ(x, z)

∣∣
H

=
c
∣∣(x,z)

∣∣
H

for some non-zero c ∈ R if and only if Φ
(
(x, z)

)
= (Mx, az) where

‖Mx‖ = c ‖x‖ for all x ∈ R2n, and |a| = c2. Specifically, if ‖Mx‖ = ‖x‖ (in
other words, M is orthogonal), and |a| = 1, then

∣∣Φ(x, z)
∣∣
H

=
∣∣(x, z)

∣∣
H

.

Proof. The proof is parallel to the proof for the form of contraction maps with
the inequalities replaced by equality.

Remark. Note again that the condition on a follows directly; given ‖Mx‖ =
c ‖x‖, we know that c is the only eigenvalue of M , and hence detM = an = c2n,
hence |a| = c2.

Given this classification of automorphisms on the Heisenberg group, we look
specifically at automorphisms that preserve certain lattices on H3(R), and we
construct examples of tilings on this group.

4.3 Lattices

In order to create specific examples of self-similar tilings in the Heisenberg group,
we need information about lattices. This allows us to find automoprhisms that
preserve a lattice, and to find a residue system. For the remainder of the paper
we restrict H to H3 (R) unless otherwise noted.

For an element h ∈ H, let h denote the image under the natural map H −→
R2. Similarly, if S ⊂ H then S̄ will denote the image of S under the natural
map. For a set S = {h1, h2} in H, and k ∈ N, let ΓS,k denote the group
generated by S, together with [h1, h2]/k, the commutator divided by k with
[h1, h2] = h1h2h

−1
1 h−1

2 .

Lemma 4.10. If Γ is a lattice in H then Γ̄ is a lattice in R2.

Proof. Because Γ is cocompact, Γ·K = H for some compact set K. This implies
that Γ̄ · K̄ = R2, and since the image under a continuous map of a compact set
is also compact, K̄ is compact, showing that Γ̄ is cocompact in R2.

Next we suppose that Γ̄ is not discrete. Then the identity of R2 must be
a limit point. Choose a series v1, v2, . . . of nonzero elemnts of Γ̄ such that
lim vi = 0. Therefore we have hi = (vi, zi) ∈ H such that vi → 0. Since we
have Γ̄ is cocompact in R2, then Γ̄ spans R2; so we can pick some h = (v, z) ∈ Γ
such that for infinitely many i, v /∈ span(vi). For such i, [h, hi] 6= 0. Now
replace the sequence hi with a subsequence so that [h, hi] 6= 0 for all hi. But
[h, hi] = 2B(v, vi) → 0 as i →∞, which is a contradiction since Γ is discrete.

Theorem 4.11. All lattices have the form ΓS,k where S̄ is a linearly indepen-
dent set.

Proof. Let Γ be a lattice and let Z be the center of H. Consider Γ ∩ Z. Since
Γ is a lattice Γ ∩ Z is a discrete subgroup of Z, and we know that Γ ∩ Z ' Z.
Let γ be a generator. Choose α and β such that ᾱ and β̄ are generators for Γ̄.
Now look at [α, β]. Since [α, β] ∈ Z we know [α, β] = γk for some k ∈ Z. Hence
Γ ' Γ{α,β},k.
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Remark. The converse is false. For example, suppose the bilinear form fixed by
the group law is

B =
[

0 1/2
−1/2 0

]
.

Let S =
{
(1, 0, π), (0, 1, 0)

}
. Here S̄ is linearly independent and

[
(1, 0, π), (0, 1, 0)

]
=

(0, 0, 1). In this case ΓS,1 ∩ Z is isomorphic to the subgroup of R generated by
1 and π and is not discrete. Thus ΓS,1 is not a lattice.

Theorem 4.12. ΓS,k
∼= ΓS′,k.

Proof. We will show that there exists an automorphism Φ of H such that
Φ(ΓS,k) = ΓS′,k. Write S = {h1, h2} and S′ = {h′1, h′2} where hi = (xi, zi)
and h′i = (x′i, z

′
i) for i = 1, 2. Since S and S

′
are both bases for R2 there

exists a symplectic similitude matrix M such that MS = S′ and there exists a
linear transformation ω : R2 → R such that ω(xi) + azi = z′i for i = 1, 2, where
a = det M . Define Φ: H → H by Φ(x, z) = (Mx, ω(x) + az) and recall that
this is an automorphism, so Φ

(
[h1, h2]

)
=
[
Φ(h1),Φ(h2)

]
. It follows that

Φ
(

[h1, h2]
k

)
=

[h′1, h
′
2]

k
,

so Φ(ΓS,k) = ΓS′,k.

Theorem 4.13. If ΓS,k and ΓS′,k′ are lattices and k 6= k′, then ΓS,k � ΓS′,k′ .

Proof. Let (ΓS,k)′ and (ΓS′,k′)′ denote the respective commutator subgroups of
ΓS,k and ΓS′,k′ . We will show that (ΓS,k)′ has index k in the center Z(ΓS,k) of
ΓS,k. Note that

Z(ΓS,k) =
〈

[h′1, h
′
2]

k

〉
and (ΓS,k)′ = 〈[h1, h2]〉. Suppose we have an isomoprphism ΓS,k → ΓS′,k′ , then
we obtain an isomorphism Z(ΓS,k)/Γ′S,k → Z(ΓS′,k′)/Γ′S′,k′ where Z(ΓS,k)/Γ′S,k

has order k and Z(ΓS′,k′)/Γ′S′,k′ has order k′. But then k = k′, a contradiction.
Therefore, ΓS,k � ΓS′,k′ .

Now that we have the form for expansion maps and lattices, we construct
specific examples of tilings in the Heisenberg group. Before showing these ex-
amples

4.4 Self-Similar Tilings on H3(R)

We may now apply Theorem 3.13 to show examples of tilings in the Heisenberg
group, along with all necessary information to plot them. The following propo-
sition gives us a method of choosing residue vectors to generate images of tilings
in in H2n+1(R).
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Proposition 4.14. Let Φ(x, y) = (Mx, ay) be an expansion on H2n+1 and M
an invertible 2n × 2n matrix with integer entries. For this proposition, fix a
bilinear form such that

2B(x,x′) ∈ Z, x,x′ ∈ Z2n

Let

C2n =

v ∈ Z2n : v = M ·

 v1

...
v2n

 , v1, . . . , v2n ∈ [0, 1),


and let

CZ = {z ∈ [0, a/2) : 2z ∈ Z} .

Then we define our set of residue vectors of Φ to be

R =
{
(x, y) : x ∈ C2n, y ∈ CZ

}
.

Now let ZH be the lattice on the Heisenberg group defined by

ZH =
{
(x, y/2) ∈ H2n+1 : x ∈ Z2n, z ∈ Z

}
.

R is a complete set of coset representors of distinct cosets of ZH mod ΦZH .

Proof. If (x, y) ∈ ZH then Φ(x, y) = (Mx, ay) ∈ ZH because M has integer
entries and a is an integer determined by M . Also for any two elements v,v′ ∈
ZH we have v ∗ v′ ∈ ZH . If v = w ∗ v′ then w ∈ ZH and if v = v′ ∗ w
then w ∈ ZH . Now we wish to show that any (x, z) ∈ ZH can be written as
equivalent to a residue mod ΦZH . Any

(x, z) = (Mv, z)

for some v ∈ Rn. Then

(x, z) = (xa, za) ∗ (xb, zb) = (Mva, za) ∗ (Mvb, zb) = (Mv, z)

where Mva = xa and Mvb = xb and x = xa + xb. Then

z = za + zb + B(xa,xb).

Since xa,xb ∈ Z2n we have 2B(xa,xb) ∈ Z. Then 2za, 2zb ∈ Z. Now it remains
to describe how to pick va,vb, za and zb. If v = (v1, . . . , v2n), then let

vb =
(
bv1c, . . . , bv2nc

)
and

va = v − vb.

Let q = z−B(xa,xb) and then define za = q−
⌊
q/(a/2)

⌋
and zb = q− za. Then

(xa, za) ∈ R and therefore (x, z) is equivalent to a residue mod ΦZH . This
means that every element of ZH is equivalent to a residue mod ZH . Now it
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remains to show that each residue represents a distinct coset of ZH . Consider
any two residues,

(x, z) = (Mv, z), (x′, z′) = (Mv′, z′).

If they are equivalent, then

(Mv, z) = (Mv′, z′) ∗ (Mp, ar)

where (p, r) ∈ ZH . Then v = v′ + p but since v = (v1, . . . , v2n) and v′ =
(v′1, . . . , v

′
2n) where each vi and v′i ∈ [0, 1) we must have p = 0. Then B(x′,Mp) =

0. Then if we let q = z − B(x′,Mp) = z then ar = bv/(a/2)c. But since
v ∈ [0, a/2) we have ar = 0. So

(Mp, r) = 0,

and the two residues are the same. Then two residues are equivalent if and only
if they are equal.

Remark. We know for tilings in R2n the number of tiles for a transformation M
is simply det M , so C2n has det M elements. CZ has a elements, so the number
of tiles of Φ is the number of residue vectors, a · detM . The important of this
result is seen when we apply Theorem 3.13 and Theorem 3.15 to the Heisenberg
group.

We will now consider two examples of fractal tilings on the Heisenberg group,
with the group law given by

(x, z) ∗ (x′, z′) =
(
x + x′, z + z′ +

1
2

(x1x
′
2 − x′1x2)

)
.

Example 4.15. The first example we will consider is the tiling generated by
the automorphism

Φ(x, z) = (Mx, 2z) , where M =
[
1 −1
1 1

]
,

with det M = 2 and a = 2. M is the same matrix that generates a twin dragon
tiling in R2. One possible set of residue vectors for this twindragon in the plane
is
{
(0, 0), (0, 1)

}
. Therefore, one possible selection of the four residues in H is{

(0, 0, 0), (0, 1, 0),
(

0, 0,
1
2

)
,

(
0, 1,

1
2

)}
.

These residue vectors are found by direct application of the previous proposition
and allow us to generate Figure 2.
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Figure 2: Self-similar tiling of H3(R) with the twin dragon

Example 4.16. The second example of a tiling in H is the one generated by
the automorphism

Φ(x, z) = (Mx, 3z) , where M =
[

2 1
−1 1

]
.

M is the same matrix that generates a terdragon in R2. One set of residues for
this tiling in the plane is

{
(0, 0), (1, 0), (2, 0)

}
. Then, one possible set of residues

for Φ in H is{
(0, 0, 0), (1, 0, 0), (2, 0, 0),

(
0, 0,

1
2

)
,

(
1, 0,

1
2

)
,

(
2, 0,

1
2

)
, (0, 0, 1), (1, 0, 1), (2, 0, 1)

}
.

By following the selection method of residues from the proposition, we generate
the tiling shown in Figure 3.

Figure 3: Self-similar tiling of H3(R) with the terdragon
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4.5 Horizontal Lifts

Another way to look at fractals on the Heisenberg group using contraction maps
is with horizontal lifts. We will consider collections of Lipschitz contractions of
the Heisenberg group with respect to the Heisenberg metric. In our case we will
consider the Heisenberg group H ≡ R3 with the group law

(x, z) ∗ (x′, z′) =
(
x + x′, z + z′ + B (x,x′)

)
where B (x,x′) = 2 (x′1 · x2 − x1 · x′2) with x = (x1, x2) and x′ = (x′1, x

′
2) .

Throughout this section we will restrict our attention to affine contractions of
H that arise as lifts of affine mappings of R2 as described below.

4.5.1 Preliminaries

Definition 4.17. A function f : X → Y between metric spaces is called r-
Lipschitz, r > 0, if

d
(
f(x), f(y)

)
≤ r · d (x, y)

for all x, y ∈ X. Moreover, f is Lipschitz if it is r-Lipschitz for some r < ∞. The
infimum of those values r for which the above inequality holds for all x, y ∈ X
is called the Lipschitz constant of f.

Definition 4.18. Let f : R2 → R2. A map F : H → H is called a lift of f if
π ◦ F = f ◦ π.

Here, π : H → R2 denotes the projection map

π(x, z) = x

where π is a mapping of our horizontal lift onto the xy-plane.
The following results using c = (2 +

√
3)1/4 are given in [1].

Theorem 4.19 (Existence and uniqueness of horizontal Lipschitz lifts). Let
f : R2 → R2 be r-Lipschitz with detDf ≡ λ. Then there exists a cr-Lipschitz
lift F : (H, dH) → (H, dH). If F̃ is another Lipschitz lift of f , then F̃ (x, z) =
F (x, z + τ) for some τ ∈ R. Conversely, if f : R2 → R2 is Lipschitz with
Lipschitz lift, then there exists λ ∈ R so that det Df ≡ λ.

The proof of the theorem gives an explicit formula for a Lipschitz lift F on
H as follows:

F (x, z) = (f(x), λz + h0(x))

where h0 is any function such that

∇h0 = 2(λ · J −Df∗ · Jf),

J (x1, x2) = (−x2, x1) and Df∗ is the conjugate transpose of Df.
Let f : R2 → R2 be a general Lipschitz map. Without further assumptions,

many different functions F : H → H serve as lifts of f. However, if we require in
addition that F be Lipschitz with respect to dH , then F is uniquely determined
by the formulas above. (This is the second result in [1]).
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Proposition 4.20. The Lipschitz lifts of a Lipschitz affine map f (x) = Mx+d,
d,x ∈ R2, are given explicitly by

F (x, z) =
(
f (x) ,detMz − 2M t · J (d) · x + τ

)
, τ ∈ R.

Proof. Let M =
[
a b
c d

]
and d = (e, f) and x = (x1, x2) with λ = detM and

a, b, c, d, e, f ∈ R. Then

∇h0 = 2(λ · J −Df∗ · Jf)

= 2
(

(−λx2, λx1)−
(
− λx2 + (ce− af) , λx1 + (bf − de)

))
= 2 (af − ce, bf − de)

= 2
[
a c
b d

](
f
−e

)
= −2M tJ (d) .

So h = −2M tJ (d) · x + τ.

Note that if M is invertible, d = 0 and τ = 0, then F is a contracting
automorphism on H as described in the earlier section.

Proposition 4.21. The Lipschitz constants of a Lipschitz affine map f (x) =
Mx + d, d,x ∈ R2 and its corresponding Lipschitz lift F agree.

Proof. Let λ be the largest eigenvalue of matrix M and x = (x1, x2) and
x′ = (x′1, x

′
2), then detM ≤ λ2. Since ‖M‖E is the square root of the largest

eigenvalue of MM t, we know that detM ≤ ‖M‖2
E . Then

dH

(
F (x, t) , F (x′, t)

)
=
(∥∥M (x1 − x′1, x2 − x′2)

∥∥4

E
+
∣∣detM

(
t− t′ + 2 (x′1x2 − x1x

′
2)
)∣∣2)1/4

≤
(
‖M‖4

E

∥∥(x1 − x′1, y1 − y′1)
∥∥2

E
+ |detM |2

∣∣t− t′ + 2 (x′1x2 − x1x
′
2)
∣∣2)1/4

≤ ‖M‖
(∥∥(x1 − x′1, y1 − y′1)

∥∥2

E
+
∣∣t− t′ + 2 (x′1x2 − x1x

′
2)
∣∣2)1/4

= ‖M‖ dH

(
(x, t) , (x′t)

)
.

Example 4.22. In the case of f(x) = Mx, where

M =
[
a 0
0 a

]
, a 6= 0

we have F (x, z) =
(
ax, a2z + τ

)
where τ ∈ R is an arbitrary constant. So the

Lipschitz constant for f and for F is a, and the contraction constant for either
is 1/a. In particular, if τ = 0 then F (x, z) =

(
ax, a2z

)
, the dilation map.
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Example 4.23. Suppose f(x) = Ix + d, where d ∈ R2,d 6= 0. Then

F (x, z) = (d, τ) ∗ (x, z)

where again τ is an arbitrary constant. Note that F is a left translation in the
Heisenberg metric.

Example 4.24. Suppose that f(x) = Mx + d where

M =
[
a −b
b a

]
,

d ∈ R2,d 6= 0 with det M = a2 + b2 = λ. Then

F (x, z) =
(
Mx + d, λz − 2M t · (−d2, d1) · x + τ

)
where τ is an arbitrary constant and d = (d1, d2). The contraction constant for
f and for F is

√
λ.

In the examples above, both f and F are similarities with their respective
metrics. Thus the Lipschitz constant agrees with the operator norm of the linear
part of f .

Proposition 4.25 ([1]). Let f1, f2 : R2 → R2 be Lipschitz maps with detDfi ≡
λi, i = 1, 2. For each i let Fi be a Lipschitz lift of fi. Then F1 ◦F2 is a Lipschitz
lift of f1 ◦ f2.

Theorem 4.26 ([1]). ] Let F = {f1, ...fM} be an iterated function system on
R2, where each map fi is ri-Lipschitz for some ri and satisfies det Dfi ≡ λi.
For each i, let Fi be a lift of fi to H. Then FH = {F1, . . . , FM} is an iterated
function system on H. Denoting by K, respectively KH , the invariant set for
F , respectively FH , we have

π (KH) = K.

These invariant sets on H are called horizontal fractals.

4.5.2 Examples

We present several examples of lifts of common iterated function systems in
R2. Notice that none of these horizontal lifts are tilings in H. We present one
example in full detail and give only the F functions for the remaining ones.

Example 4.27 (Sierpinksi gasket). First we define e1 = (0, 0), e2 = (1/4,
√

3/4), e3 =
(1/2, 0) to be non-rotational translation vectors in R2. Let M be an invertible
2 × 2 matrix such that M · (x1, x2) = (x1/2, x2/2). In other words, M is a
dilation that scales (x1, x2) by 1/2. We define each fi in the following way:
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f1(x1, x2) =
(x1

2
,
x2

2

)
+ e1 =

(x1

2
,
x2

2

)
f2(x1, x2) =

(x1

2
,
x2

2

)
+ e2 =

(
x1

2
+

1
4
,
x2

2
+
√

3
4

)

f3(x1, x2) =
(x1

2
,
x2

2

)
+ e3 =

(
x1

2
+

1
2
,
x2

2

)
.

The iterated function system defined as F = {f1, f2, f3} has the Sierpinski
gasket as its invariant set. For each fi, we must find λi, λiJ , Jfi, Df∗i , and
∇hi

0. For our example we have,

Df∗i =
[
1/2 0
0 1/2

]
λi =

1
4

∀i ∈ {1, 2, 3}.

i λiJ Jfi

1 (−x2/4, x1/4) (−x2/2, x1/2)
2 (−x2/4, x1/4) (−x2/2, x1/2 + 1/2)
3 (−x2/4, x1/4) (−x2/2−

√
3/4, x1/2 + 1/4)

∇h1
0 = 2 (λ1J −Df∗1 · Jf1) = 2 · (0, 0) = (0, 0)

h1
0 = τ1

∇h2
0 = 2 (λ2J −Df∗2 · Jf2) = 2 ·

(
0,−1

4

)
=
(

0,−1
2

)
h2

0 = −y

2
+ τ2

∇h3
0 = 2 (λ3J −Df∗3 · Jf3) = 2 ·

(√
3

4
,−1

4

)
=

(√
3

2
,−1

2

)

h3
0 =

√
3x

4
− y

4
+ τ3.

The arbitrary constants, (τ1, τ2, τ3) ∈ R3 are formed from the partial inte-
gration of the gradient ∇hi

0. Now, we may derive our lift functions Fi,

F1(x1, x2, z) =
(x1

2
,
x2

2
,
z

4
+ τ1

)
F2(x1, x2, z) =

(
x1

2
+

1
4
,
x2

2
+
√

3
4

,
z

4
− x2

2
+ τ2

)

F3(x1, x2, z) =

(
x1

2
+

1
2
,
x2

2
,
z

4
+
√

3x1

4
− x2

4
+ τ3

)
.
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(a) Projection of the horizontal lift onto
R2
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(b) Lift of a Sierpinski gasket with
(τ1, τ2, τ3) = (0, 0, 0)

Figure 4: Horizontal lift of Example 4.27

Example 4.28 (Hexagasket). We present the horizontal lift formed from func-
tions listed in Appendix A.1. An example of a lift of the hexagasket is shown
in Figure 5.

-0.5 0.5 1 1.5 2

0.5

1

1.5

2

2.5

(a) Projection of the horizontal lift onto R2

0
1

2

0

1

2

-2

0

2

0

1

2

(b) Lift of a Hexagasket
with (τ1, τ2, τ3, τ4, τ5, τ6) =
(0, 0, 0, 0, 0, 0)

Figure 5: Horizontal lift of Example 4.28

Example 4.29 (Fractal cross). We present the horizontal lift formed from
functions listed in Appendix A.2. An example of a lift of the fractal cross is
shown in Figure 6.
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(a) Projection of the horizontal lift onto R2
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(b) Lift of a Fractal cross
with (τ1, τ2, τ3, τ4, τ5) =
(0, 0, 0, 0, 0)

Figure 6: Horizontal lift of Example 4.29

Example 4.30 (Spiral). We present the horizontal lift formed from functions
listed in Appendix A.3. An example of a lift of the fractal cross is shown in
Figure 7.
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(a) Projection of the horizontal lift onto
R2
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1.5
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1

0.5
0

0.5
1

.5

0

0.5
1

(b) Lift of a spiral with
(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9) =
(0, 0, 0, 0, 0, 0, 0, 0, 0)

Figure 7: Horizontal lift of Example 4.30

5 Future Work

The work we have done suggests several directions for further investigation.
While we did characterize all automorphisms on the general Heisenberg group,
we have only investigated lattices (discrete cocompact subgroups) in the three-
dimensional case. A classification of Heisenberg lattices in general would allow

27



investigation of automorphisms that preserve various lattices, which would be
helpful in developing a deeper understanding of self-similar tiling in higher di-
mensional Heisenberg groups, and in creating varied examples of such tilings.

Additionally, now that we have a result proving we’re able to construct a
self-similar tiling in a rational graded nilpotent Lie group given an expansive
map that preserves a lattice, a natural next step would be to examine the form
of such maps in the general nilpotent Lie groups. To investigate the form of
these automorphisms we would first need to know the specific restrictions on
the polynomials Fij that will guarantee we get a group. If we could classify
automorphisms and lattices on general nilpotent Lie groups, that would allow
the creation of specific examples of self-similar tilings on these groups.

Finally, we focused on nilpotent Lie groups because we knew they would
allow us to have a metric, a measure, and lattices; they are not, however, nec-
essarily the only class of groups that have these characteristics. A natural
direction for further research would be to generalize our result to include even
more general groups.
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A Lift Functions

For each example we present the list of affine functions f1, f2, . . . , fk that gener-
ate a fractal in R2 and the corresponding lift functions F1, F2, . . . , Fk that form
a fractal in H.
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A.1 Example 4.28

f1(x1, x2) =
(x1

3
,
x2

3

)
f2(x1, x2) =

(x1

3
+ 1,

x2

3

)
f3(x1, x2) =

(
x1

3
+

3
2
,
x2

3
+
√

3
2

)
f4(x1, x2) =

(x1

3
+ 1,

x2

3
+
√

3
)

f5(x1, x2) =
(x1

3
,
x2

3
+
√

3
)

f6(x1, x2) =

(
x1

3
− 1

2
,
x2

3
+
√

3
2

)
F1(x1, x2, z) =

(
f1(x1, x2),

z

9
+ τ1

)
F2(x1, x2, z) =

(
f2(x1, x2),

z

9
− 2

3
x2 + τ2

)
F3(x1, x2, z) =

(
f3(x1, x2),

z

9
+
√

3x1

3
− x2 + τ3

)

F4(x1, x2, z) =

(
f4(x1, x2),

z

9
+

2
√

3x1

3
− 2x2

3
+ τ4

)

F5(x1, x2, z) =

(
f5(x1, x2),

z

9
+

2
√

3x1

3
+ τ5

)

F6(x1, x2, z) =

(
f6(x1, x2),

z

9
+
√

3x1

3
+

x2

3
+ τ6

)

29



A.2 Example 4.29

f1(x1, x2) =
(

2x1

5
+

x2

5
,
−x1

5
+

2x2

5

)
f2(x1, x2) =

(
2x1

5
+

x2

5
,
−x1

5
+

2x2

5
+ 1
)

f3(x1, x2) =
(

2x1

5
+

x2

5
− 1,

−x1

5
+

2x2

5

)
f4(x1, x2) =

(
2x1

5
+

x2

5
+ 1,

−x1

5
+

2x2

5

)
f5(x1, x2) =

(
2x1

5
+

x2

5
,
−x1

5
+

2x2

5
− 1
)

F1(x1, x2, z) =
(
f1(x1, x2),

z

5
+ τ1

)
F2(x1, x2, z) =

(
f2(x1, x2),

z

5
+

4x1

5
+

2x2

5
+ τ2

)
F3(x1, x2, z) =

(
f3(x1, x2),

z

5
− 2x1

5
+

4x2

5
+ τ3

)
F4(x1, x2, z) =

(
f4(x1, x2),

z

5
+

2x1

5
− 4x2

5
+ τ4

)
F5(x1, x2, z) =

(
f5(x1, x2),

z

5
− 4x1

5
− 2x2

5
+ τ5

)
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A.3 Example 4.30

f1(x1, x2) =
(x1

3
,−x2

3

)
f2(x1, x2) =

(
x1

3
+

1
3
,
x2

3

)
f3(x1, x2) =

(x1

3
+ 1,

x2

3

)
f4(x1, x2) =

(
x1

3
,
x2

3
+

1
3

)
f5(x1, x2) =

(
x1

3
+

1
3
,
x2

3
+

1
3

)
f6(x1, x2) =

(
x1

3
+

2
3
,
x2

3
+

1
3

)
f7(x1, x2) =

(
−x1

3
,
x2

3
+

2
3

)
f8(x1, x2) =

(
x1

3
+

1
3
,
x2

3
+

2
3

)
f9(x1, x2) =

(
x1

3
+

2
3
,
x2

3
+ 1
)

F1(x1, x2, z) =
(

f1(x1, x2),
z

9
+

4x1 · x2

9
+ τ1

)
F2(x1, x2, z) =

(
f2(x1, x2),

z

9
− 2x2

9
+ τ2

)
F3(x1, x2, z) =

(
f3(x1, x2),

z

9
− 2x2

3
+ τ3

)
F4(x1, x2, z) =

(
f4(x1, x2),

z

9
+

2x1

9
+ τ4

)
F5(x1, x2, z) =

(
f5(x1, x2),

z

9
+

2x1

9
− 2x2

9
+ τ5

)
F6(x1, x2, z) =

(
f6(x1, x2),

z

9
+

2x1

9
− 4x2

9
+ τ6

)
F7(x1, x2, z) =

(
f7(x1, x2),

z

9
− 4x1

9
+ τ7

)
F8(x1, x2, z) =

(
f8(x1, x2),

z

9
+

4x1

9
− 2x2

9
+ τ8

)
F9(x1, x2, z) =

(
f9(x1, x2),

z

9
+

2x1

3
+

4x2

9
+ τ9

)
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