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Self-Similar Tiling Example

If

M−1 =
[
1/2 0
0 1/2

]
then define the following contraction mappings in R2

f1(x1, x2) := M−1

[
x1

x2

]
f2(x1, x2) := M−1

[
x1

x2

]
+

[
1/2
0

]
f3(x1, x2) := M−1

[
x1

x2

]
+

[
1/2
1/2

]
f4(x1, x2) := M−1

[
x1

x2

]
+

[
1

1/2

]
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Iterated Function System

Definition
The set of transformations used in the iteration process is
called an iterated function system. The limit of this process is
called an attractor.

In 1981, Hutchinson [4] developed the mathematical theory
behind the covergence of this process.
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Metric Spaces

Definition
A metric space is a 2-tuple (X, d) where X is a set and d is a
metric on X; that is, a function

d : X ×X → R,

such that
1 d(x, y) ≥ 0 (non-negativity),
2 d(x, y) = 0 if and only if x = y (identity),
3 d(x, y) = d(y, x) (symmetry),
4 d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
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Metric Spaces

Example

The Euclidean space R2 with the Euclidean metric
d : R2 × R2 → R where

d(x, y) =
√

(x1 − x2)2 + (y1 − y2)2.

Rohal Self-Similar Tilings of Nilpotent Lie Groups



Introduction
Self-Similar Tilings

The Heisenberg Group

Example
Tilings
Groups
Nilpotent Lie Groups

Metric Spaces

Definition
A complete metric space is a metric space in which every
Cauchy sequence is convergent.
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Tilings

Definition
A tiling of a complete metric space X is a locally finite collection
T of non-empty subsets of X such that:

1 For any A ∈ T , cl (int A) = A.
2 For any distinct A,B ∈ T , intA ∩ intB = ∅.
3

⋃
A∈T A = X.
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Self-Similar Tilings

Definition
A self-similar tiling is a tiling composed of smaller tiles (rep
tiles) of the same size, each being the same shape as the
whole. We refer to a m-rep tile as an object that can be
dissected into m smaller copies of itself.

0.5 1 1.5 2

-1

-0.5

0.5

1

Rohal Self-Similar Tilings of Nilpotent Lie Groups



Introduction
Self-Similar Tilings

The Heisenberg Group

Example
Tilings
Groups
Nilpotent Lie Groups

Group

Definition
A group G is a set of elements together with a binary operation
(∗) called the group operation that together satisfy the four
fundamental properties:

Closure: If a, b ∈ G, then the product a ∗ b ∈ G.
Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Identity: There is an identity element 0 ∈ G such that
0 ∗ a = a ∗ 0 = a for every element a ∈ G.
Inverse: There must be an inverse or reciprocal of each
element. Therefore, G must contain an element b = a−1

such that a ∗ b = b ∗ a = 0 for each element a ∈ G.
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Abelian Group

Definition
An abelian group is a group G for which the elements commute;
that is, for all elements a, b ∈ G, ab = ba.
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Commutator

Definition
For a group G, the commutator of two subgroups A,B ⊆ G is
the subgroup [A,B] where

[A,B] =
{
aba−1b−1 : a ∈ A, b ∈ B

}
.

The commutator [G, G] measures the extent to which the group
operation on G fails to be commutative.
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Nilpotent Group

Definition
Let G be a group, and let A0, A1, A2, . . . be a sequence of
groups with A0 = G and Ai+1 = [G, Ai]. G is nilpotent if for
some n, An is trivial.

Example
1 n× n upper triangular matrices with 1s on the diagonal.
2 Any subgroup of Item 1.
3 Any abelian group.
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Lie Group

Definition
A Lie group is a smooth manifold obeying the group properties
and that satisfies the additional condition that the group
operations are differentiable.
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Why Nipotent Lie Groups?

Every point in a smooth manifold has a neighborhood
which resembles Euclidean space.
Nilpotent Lie groups have a natural automorphic dilation
structure.
Nilpotent Lie groups often have discrete cocompact
subgroups (lattices).
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Morphisms

Definition

An isomorphism is a bijective map f such that both f and f−1

are structure-preserving mappings.

Example

Isomorphisms of two-dimensional Euclidean space R2 are
special cases of linear transformations such as:

Rotation :
[
0 −1
1 0

]
Reflection :

[
1 0
0 −1

]
.

Expansion by k:
[
k 0
0 k

]
Contraction by k:

[
1/k 0
0 1/k

]
.
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Morphisms

Definition
An automorphism Φ is an isomorphism from a mathematical
object to itself. For a group G with elements α, β ∈ G:

Φ(α ∗ β) = Φ(α) ∗ Φ(β).
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Expansions

Let (G, d) be a locally compact Hausdorff space.

Definition
A function Φ: G → G is an expansive map if there exists an
r ∈ R, r > 1, such that for α, β ∈ G,

d
(
Φ(α),Φ(β)

)
≥ r · d (α, β) .
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Lattices

Definition
A lattice Γ ⊂ G is a cocompact discrete subgroup of G.

Definition
For Γ ⊂ G, Γ is cocompact in G if for a compact set K ⊂ G⋃

γ∈Γ

(γ ∗K) = G.

Example
Zn is cocompact in Rn.
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Notation

Until otherwise noted3:
Let G be a nilpotent Lie group with group operation ∗. Then
G is a locally compact Hausdorff topological group, and
has a right-invariant Riemannian metric [6].
Let Γ ⊂ G be a lattice.
Let Φ be a continuous expansive automorphism of G such
that Φ(Γ) ⊆ Γ.
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Residue System

Definition
A family {y1, . . . , ym} ⊂ Γ is a residue system or a complete set
of coset representatives of Φ, if y1 = 0 and

Γ =
∗⋃
{yi ∗ Φ(Γ) : i = 1, . . . ,m}.

3G is a nilpotent Lie group, Γ ⊂ G is a lattice, Φ is a continuous expansive
automorphism of G
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Self-Similar (Revisited)

Definition ([4])

Define fi as fi(α) = Φ−1(α) ∗ yi, i = 1, . . . ,m. A compact set
A 6= ∅ is self-similar with respect to f1, . . . , fm if

A = f1(A) ∪ · · · ∪ fm(A).

3G is a nilpotent Lie group, Γ ⊂ G is a lattice, Φ is a continuous expansive
automorphism of G
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The Main Result

Let m equal the cardinality of Γ/Φ(Γ). Fix a right Haar measure
µ on G.

Theorem
If Φ is a continuous expansive automorphism of G and
{y1, . . . , ym} is a residue system of Φ, then there is a unique
m-rep tile A1 such that

Φ (A1) = A1 ∪ · · · ∪Am with Ai = A1 ∗ yi.

3G is a nilpotent Lie group, Γ ⊂ G is a lattice, Φ is a continuous expansive
automorphism of G
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Definition

Definition
Let the Heisenberg group be defined by

H2n+1 (R) =
{
(x, z) : x ∈ R2n, z ∈ R

}
with the group law

(x, z) ∗
(
x′, z′

)
=

(
x + x′, z + z′ + B

(
x,x′

))
where B is a nondegenerate skew-symmetric bilinear form on
R2n. For notational purposes let H = H2n+1 (R).
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Norm

Definition
We define the norm by∣∣(x, z)

∣∣
H

=
(
‖x‖4 + |z|2

)1/4
,

where || · || is the standard Euclidean norm on R2n.
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Automorphisms

Theorem
Any automorphism Φ: H → H is of the form
Φ

(
(x, z)

)
= (Mx, ω (x) + az), where M ∈ GSp (2n) such that

B (Mv,Mw) = aB (v,w) for all v,w ∈ R2n, and where
ω : R2n → R is a linear tranformation.

Fact

For M ∈ GSp(2n) we have the relationship an = detM where
M uniquely determines a.
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Expansion Maps

Theorem
An automorphism Φ: H → H is an expansion map if and only if
Φ

(
(x, z)

)
= (Mx, az) where, for some 0 < c < 1,∥∥M−1x

∥∥ ≤ c ‖x‖ and
∣∣a−1

∣∣ ≤ c2.
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Group Law for Examples

Consider two examples of fractal tilings on the Heisenberg
group, with the group law given by

(x, z) ∗ (x′, z′) =
(
x + x′, z + z′ +

1
2

(
x1x

′
2 − x′1x2

))
.
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Twin Dragon

Example
The first example we will consider is the tiling generated by the
automorphism

Φ(x, z) = (Mx, 2z) , where M =
[
1 −1
1 1

]
.

M is the same matrix that generates a twindragon tiling in R2.
One possible set of residue vectors for this twindragon in the
plane is

{
(0, 0), (0, 1)

}
. Therefore, one possible selection of the

four residues is{
(0, 0, 0), (0, 1, 0),

(
0, 0,

1
2

)
,

(
0, 1,

1
2

)}
.
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Twin Dragon

These residue vectors are found by direct application of the
previous proposition and allow us to generate the figure below.
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Example
The second example of a tiling in H is the one generated by the
automorphism

Φ(x, z) = (Mx, 3z) , where M =
[

2 1
−1 1

]
.

M is the same matrix that generates a terdragon in R2. One set
of residues for this tiling in the plane is

{
(0, 0), (1, 0), (2, 0)

}
.

Then, one possible set of residues for Φ is{
(0, 0, 0), (1, 0, 0), (2, 0, 0),

(
0, 0, 1

2

)
,
(
1, 0, 1

2

)
,
(
2, 0, 1

2

)
, (0, 0, 1), (1, 0, 1), (2, 0, 1)

}
.
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By following the selection method of residues from the
proposition, we generate the tiling shown in the figure below.
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