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det(Hess ¢)(x) # 0

norms of V¢ and Hess ¢ are bounded

g:

f2

(3 + 55+ )"
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Trajectory of Vg through @ using £&

¢'(t) = Vg(¢(t)) whent#0
and

lim ¢(t) = @

t—0T

lim (P:(t) = £& = outgoing evec. of
=0t |9 (1) of (Hess ¢)(73)

connected by steepest ascent paths

rl/ r3 are ° ° °
using outgoing eigenvectors
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1. Correctness: What if g is not a routing function?

f2

8‘:

(x5 + x5+ 1)

deg(f)+1

(x% -+ x% — 2) (x% -+ x%)

infinitely many routing points

. =

g 1s not Morse
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1. Correctness: Fixing by Perturbation

2 turb
f pertur - f2
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2 turb
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1. Correctness: Fixing by Perturbation

2 turb
f pertur 2
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(x2 + x2 4 1) 98U (x1 =002 + (12— 12 +1)

finitely many routing points

¢ 1s Morse
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2. Termination: Theorem

Theorem

VfeZ|xy,..., X

J1 semialgebraic set S C R”
dim (R"\ S) < n
Y(c1,...,cn) €S

f2

g —
((x1 —c1)2+ -+ (xn — cp)2 + 1)9e8)

is a routing function
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2. Termination: Theorem

Theorem C> < R2 \ S

VfeZ|xy,..., X

J1 semialgebraic set S C R”
dim (R"\ S) < n
Y(c1,...,cn) €S

(0,0)

f2
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g:

is a routing function
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2. Termination: Theorem

Theorem Co = R2 \ S

\V/f <z [xll R xn] perturb using

J1 semialgebraic set S C R” graded lex.
order

dim (IRn\S) <n

(O/O) Cl
\V/(Cl,. : .,Cn) cS

f2
((x1 —c1)2+ -+ (xn — cp)2 + 1)9e8)
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2. Termination: Theorem

Theorem C2 = R? \'S
\V/f = Z['x].l IR xn] | perturb using
. . B e S e g ded lex.
J semialgebraic set S C R"” graded lex
U s e i s order

dim (R"\ S) < n
Y(c1,...,cn) €S

y
(0/0)‘ ——————— g

f2
((x1 —c1)2+ -+ (xn — cp)2 + 1)9e8)

g:

is a routing function
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2. Termination: Theorem

Theorem C> < R2 \ S

VfeZ|xy,..., X .

J1 semialgebraic set S C R”
dim (R"\ S) < n
Y(c1,...,cn) €S

perturb using
graded lex.
order

g —
((x1 —c1)2+ -+ (xn — cp)2 + 1)9e8)

is a routing function

Proof Idea: Clever application of Sard’s Theorem twice
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q

1 unit

Length = 11.3572

Given f € Z[xy,...,Xy] d=deg(f)=2
p.q€Q"N{f #0} n>2
(C1 ..... Cn) cZ"
such that
_ f?
8~ d+1

((x1—c1) + -+ (xn —cn)? +1)

is a routing function
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3. Length Bound: Problem

P

q

1 unit

Length = 11.3572

Given f € Z[xy,...,Xy] d=deg(f)=2

p,q€Q"N{f #0} n>2
(Cl,...,Cn) c 7"

such that

f2

ST (G —e) bt (e )T

is a routing function

Find A such that
Length<A(n,d, H, c1,...,cn P, q)

H = max‘coefﬁcients of f ‘
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a connectivity path of length bounded by
4nr(6d +4)" 1

where

4n3(6d)>"
r=n (120A1A2Hd (c% b2t 1))

1

Aq
(2dH (& + - - + 3 +2)) " }

e min {g(P),g(q),
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1. Radius Bound
2. Trajectory Bound
3. Proof Sketch
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3. Length Bound: Theorem
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a connectivity path of length bounded by
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where
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f

Aq

e min {g(z?),g(q), 1
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M bound

Application of DMM bound
in [Emiris, et al. 2010]
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3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by

) Application of bound
dnr(6d +4)" ! iE}EBasu, Roy. 2010]
where radius bound
( 5 5 4n3(6d)3”\
r =n (120A1A2Hd (C1 + 0t 1))
A1 _ min g(p), 500} : |
A 4 4 3 5n
Az (2dH (G + -+ + 3 +2)) 0T

M bound

Application of DMM bound
in [Emiris, et al. 2010]
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3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by

a connectivity path of length bounded by

where

We can contain { ¢ > 1

f

) Application of bound

dnr(6d +4)" ! iE}EBasu, Roy. 2010]

radius bound
5 5 4n3(6d)3”\
. (120A1A2Hd (61 b2t 1))
g(p) gq) | : |
/ / 3 5n
(2dH (3 + -+ 42 42)) 0

M bound

Application of DMM bound
¢ in [Emiris, et al. 2010]
A1 . .
in a ball of radius r.

A
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3. Length Bound: Trajectory Bound

Length of a trajectory of Vg in a ball B of radius r
is bounded by
2nr(6d + 4)" 1

Let trajectory; € connected component 1 of g_l ((a, b)) N B
Z Length(trajectory;) < 2nr(6d + 4)" !
1

Proof Idea: Motivated by [D’ Acunto, Kurdyka. 2004]
)
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