Connectivity in Semi-Algebraic Sets

by James Rohal (jjrohal@ncsu.edu)

Ph.D. defense for partial fulfillment of the requirements for the Degree of Doctor of Philosophy at North Carolina State University

Applied Mathematics

May 12, 2014

Committee

Chair	Hoon Hong ¹	hong@ncsu.edu
Member	Jonathan Hauenstein ¹	hauenstein@ncsu.edu
Member	Erich Kaltofen ¹	kaltofen@ncsu.edu
Member	Agnes Szanto ¹	szanto@ncsu.edu
External Member	Mohab Safey El Din ²	Mohab.Safey@lip6.fr
Graduate School Rep	Edgar Lobaton ¹	edgar.lobaton@ncsu.edu

- 1 North Carolina State University, Raleigh, NC 27695, USA
- ² Université Pierre et Marie Curie, 75005 Paris, France

Can I connect • and • using a continuous path that does not cross the black curve?

Can I connect • and • using a continuous path that does not cross the black curve?

NO

Can I connect • and • using a continuous path that does not cross the black curve?

Can I connect • and • using a continuous path that does not cross the black curve?

Can I connect • and • using a continuous path that does not cross the black curve?

Can I connect • and • using a continuous path that does not cross the black curve?

Can I connect • and • using a continuous path that does not cross the black curve?

YES

Can I connect • and • using a continuous path that does not cross the black curve?

YES

Can I connect • and • using a continuous path that does not cross the black curve?

Can I connect • and • using a continuous path that does not cross the black curve?

YES

Can I connect • and • using a continuous path that does not cross the black curve?

YES

Can I connect • and • using a continuous path that does not cross the surface?

Can I connect • and • using a continuous path that does not cross the surface?

Can I connect • and • using a continuous path that does not cross the surface?

Can I connect • and • using a continuous path that does not cross the surface?

NO

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

Do
$$\left(-\frac{3}{2}, -\frac{7}{4}\right)$$
 and $\left(-\frac{1}{2}, 2\right)$

lie in a same connected region of $\{f \neq 0\}$?

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

Do
$$\left(-\frac{3}{2}, -\frac{7}{4}\right)$$
 and $\left(-\frac{1}{2}, 2\right)$

lie in a same connected region of $\{f \neq 0\}$?

Do
$$\left(-\frac{3}{2}, -\frac{7}{4}\right)$$
 and $\left(-\frac{1}{2}, 2\right)$

lie in a same connected region of $\{f \neq 0\}$?

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

Input

 $f \in \mathbb{Z}[x_1, ..., x_n]$, squarefree, finitely many singular points, $n \ge 2$, $\deg(f) \ge 1$ $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

Input

 $f \in \mathbb{Z}[x_1, ..., x_n]$, squarefree, finitely many singular points, $n \ge 2$, $\deg(f) \ge 1$ $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$

Output

True

if p, q are in a same semi-algebraically connected component of $\{f \neq 0\}$

False

otherwise

Input

 $f \in \mathbb{Z}[x_1, ..., x_n]$, squarefree, finitely many singular points, $n \ge 2$, $\deg(f) \ge 1$ $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$

Output

True

if p, q are in a same semi-algebraically connected component of $\{f \neq 0\}$

False

otherwise

Input

 $f \in \mathbb{Z}[x_1, ..., x_n]$, squarefree, finitely many singular points, $n \ge 2$, $\deg(f) \ge 1$ $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$

Output

True

if p, q are in a same semi-algebraically connected component of $\{f \neq 0\}$

False

otherwise

$$f = 10x_1^3 - 10x_1^2 + 10x_2^2 - 1$$

True

Motivations and Previous Works

- Fundamental in computational real algebraic geometry.
- Many important applications in science and engineering.
- Previous work:
 - 1975 Collins
 - 1983 Schwartz, Sharir
 - 1984 Arnon, Collins, McCallum
 - 1987 Canny, Roy
 - 1988 Arnon, McCallum
 - 1989 Alonso, Raimondo
 - 1992 Feng, Grigor'ev, Vorobjov
 - 1993 Hong
 - 1994 Heintz, Roy, Solerno
 - 1996 Basu, Pollack, Roy
 - 2010 Hong, Quinn
 - 2011 Safey El Din, Schost
 - 2012 Basu, Roy, Safey El Din, Schost
 - 2013 Basu, Roy

Input: $f(x_1, x_2)$, , ,

Input: $f(x_1, x_2)$, , ,

Input: $f(x_1, x_2)$, , ,

Input:
$$f(x_1, x_2)$$
, $f(x_1, x_2)$

Input:
$$f(x_1, x_2)$$
, f^2

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

2: Solve
$$\nabla g(x) = 0 \land g(x) \neq 0$$

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

2: Solve
$$\nabla g(x) = 0 \land g(x) \neq 0$$

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- **4:** Steepest ascent using outgoing eigenvectors

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- **5:** Form adjacency matrix

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- **5:** Form adjacency matrix

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix

 1
 2
 3
 4
 5
 6
 7
 8

 1
 1
 1
 1
 1
 0
 0
 0
 0

 2
 1
 1
 1
 1
 1
 0
 0
 0
 0

 3
 1
 1
 1
 1
 1
 0
 0
 0

 4
 1
 1
 1
 1
 1
 0
 0
 0

 5
 1
 1
 1
 1
 1
 0
 0
 0

 6
 0
 0
 0
 0
 0
 1
 1
 1

 7
 0
 0
 0
 0
 0
 1
 1
 1

 8
 0
 0
 0
 0
 0
 1
 1
 1

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from


```
      1
      2
      3
      4
      5
      6
      7
      8

      1
      1
      1
      1
      1
      0
      0
      0

      2
      1
      1
      1
      1
      1
      0
      0
      0

      3
      1
      1
      1
      1
      1
      0
      0
      0

      4
      1
      1
      1
      1
      1
      0
      0
      0

      5
      1
      1
      1
      1
      1
      0
      0
      0

      6
      0
      0
      0
      0
      0
      1
      1
      1

      7
      0
      0
      0
      0
      0
      1
      1
      1

      8
      0
      0
      0
      0
      0
      1
      1
      1
```

Input: $f(x_1, x_2)$, ,

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

2: Solve
$$\nabla g(x) = 0 \land g(x) \neq 0$$

3: Find eigenvectors of (Hess g)(\bullet)

4: Steepest ascent using outgoing eigenvectors positive eigenvalue

5: Form adjacency matrix

6: Closure of adjacency matrix

7: Steepest ascent from


```
      1
      2
      3
      4
      5
      6
      7
      8

      1
      1
      1
      1
      1
      0
      0
      0

      2
      1
      1
      1
      1
      1
      0
      0
      0

      3
      1
      1
      1
      1
      1
      0
      0
      0

      4
      1
      1
      1
      1
      1
      0
      0
      0

      5
      1
      1
      1
      1
      1
      0
      0
      0

      6
      0
      0
      0
      0
      0
      1
      1
      1

      7
      0
      0
      0
      0
      0
      1
      1
      1

      8
      0
      0
      0
      0
      0
      1
      1
      1
```

Input: $f(x_1, x_2)$, ,

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

2: Solve
$$\nabla g(x) = 0 \land g(x) \neq 0$$

3: Find eigenvectors of (Hess g)(\bullet)

4: Steepest ascent using outgoing eigenvectors positive eigenvalue

5: Form adjacency matrix

6: Closure of adjacency matrix

7: Steepest ascent from

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from

 1
 2
 3
 4
 5
 6
 7
 8

 1
 1
 1
 1
 1
 0
 0
 0

 2
 1
 1
 1
 1
 1
 0
 0
 0

 3
 1
 1
 1
 1
 1
 0
 0
 0

 4
 1
 1
 1
 1
 1
 0
 0
 0

 5
 1
 1
 1
 1
 1
 0
 0
 0

 6
 0
 0
 0
 0
 0
 1
 1
 1

 7
 0
 0
 0
 0
 0
 1
 1
 1

 8
 0
 0
 0
 0
 0
 1
 1
 1

Input: $f(x_1, x_2)$, • ,

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

2: Solve
$$\nabla g(x) = 0 \land g(x) \neq 0$$

3: Find eigenvectors of (Hess g)(\bullet)

4: Steepest ascent using outgoing eigenvectors positive eigenvalue

5: Form adjacency matrix

6: Closure of adjacency matrix

7: Steepest ascent from

8: Steepest ascent from

 1
 2
 3
 4
 5
 6
 7
 8

 1
 1
 1
 1
 1
 0
 0
 0

 2
 1
 1
 1
 1
 1
 0
 0
 0

 3
 1
 1
 1
 1
 1
 0
 0
 0

 4
 1
 1
 1
 1
 1
 0
 0
 0

 5
 1
 1
 1
 1
 1
 0
 0
 0

 6
 0
 0
 0
 0
 0
 1
 1
 1

 7
 0
 0
 0
 0
 0
 1
 1
 1

 8
 0
 0
 0
 0
 0
 1
 1
 1

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from
- **9:** Read matrix

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)(\bullet)
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from
- **9:** Read matrix

 1
 2
 3
 4
 5
 6
 7
 8

 1
 1
 1
 1
 1
 0
 0
 0
 0

 2
 1
 1
 1
 1
 1
 0
 0
 0
 0

 3
 1
 1
 1
 1
 1
 0
 0
 0
 0

 4
 1
 1
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Input: $f(x_1, x_2)$, ,

1:
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

2: Solve
$$\nabla g(x) = 0 \land g(x) \neq 0$$

3: Find eigenvectors of (Hess g)(\bullet)

4: Steepest ascent using outgoing eigenvectors positive eigenvalue

5: Form adjacency matrix

6: Closure of adjacency matrix

7: Steepest ascent from

8: Steepest ascent from

9: Read matrix

Output: True

Method: Demo

1. Correctness

- 1. Correctness
- 2. Termination

- 1. Correctness
- 2. Termination
- 3. Length Bound

Method Summary:

Method Summary:

1. Using *f*, form a function *g* having "good" properties.

Method Summary:

1. Using *f*, form a function *g* having "good" properties.

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$,

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$,

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Theorem:

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Theorem:

Let *g* be a "good" function.

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Theorem:

Let *g* be a "good" function.

Any two critical points of g in a same connected component of $\{g \neq 0\}$ are connected by steepest ascent paths using outgoing eigenvectors.

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Theorem:

Let *g* be a "good" function.

Any two critical points of g in a same connected component of $\{g \neq 0\}$ are connected by steepest ascent paths using outgoing eigenvectors.

What if this was false?

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Theorem:

Let *g* be a "good" function.

Any two critical points of g in a same connected component of $\{g \neq 0\}$ are connected by steepest ascent paths using outgoing eigenvectors.

What if this was false?

Method Summary:

- 1. Using *f*, form a function *g* having "good" properties.
- 2. Find critical points of g where $g \neq 0$, and connect them by steepest ascent paths using outgoing eigenvectors.
- 3. Connect points \bullet , \bullet to a critical point of g by steepest ascent paths of ∇g .

Theorem:

Let *g* be a "good" function.

Any two critical points of g in a same connected component of $\{g \neq 0\}$ are connected by steepest ascent paths using outgoing eigenvectors.

What if this was false?

GOOD PROPERTIES

GOOD PROPERTIES

BAD PROPERTIES

• $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$

GOOD PROPERTIES

•
$$g(x) \rightarrow 0$$
 as $||x|| \rightarrow \infty$

GOOD PROPERTIES

•
$$g(x) \rightarrow 0$$
 as $||x|| \rightarrow \infty$

GOOD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$

GOOD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$

GOOD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$

GOOD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

GOOD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

$$\det(\operatorname{Hess} g)(x) \neq 0$$

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

• g is Morse $det(Hess g)(x) \neq 0$

norms of ∇g and Hess g are bounded

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

• g is Morse $\det(\text{Hess } g)(x) \neq 0$

• norms of ∇g and Hess g are bounded

GOOD PROPERTIES

BAD PROPERTIES

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

• g is Morse $\det(\text{Hess } g)(x) \neq 0$

• norms of ∇g and Hess g are bounded

GOOD PROPERTIES

These good properties define a **routing function**.

- $g(x) \rightarrow 0$ as $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

• g is Morse $det(Hess g)(x) \neq 0$

• norms of ∇g and Hess g are bounded

GOOD PROPERTIES

• $g(x) \to 0$ as $||x|| \to \infty$

- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

• g is Morse $\det(\text{Hess } g)(x) \neq 0$

• norms of ∇g and Hess g are bounded

These good properties define a **routing function**.

Example

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$

1. Correctness: Steepest Ascent

1. Correctness: Steepest Ascent

Trajectory of ∇g through \bigcirc

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$

1. Correctness: Steepest Ascent

Trajectory of ∇g through

$$\phi'(t) = \nabla g(\phi(t))$$

$$\phi(0) = \bullet \qquad (0, \infty) \wedge$$

Trajectory of ∇g through

$$\phi'(t) = \nabla g(\phi(t))$$

$$\phi(0) = \bullet \qquad (0, \infty) \wedge$$

Trajectory of ∇g through

$$\phi'(t) = \nabla g(\phi(t))$$

$$\phi(0) = \bullet \qquad (0, \infty)$$

Trajectory of ∇g through

$$\phi'(t) = \nabla g(\phi(t))$$

$$\phi(0) = \bullet \qquad (0, \infty)$$

Trajectory of ∇g through \bigcirc

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$

Trajectory of ∇g through \bigcirc using \swarrow

$$\phi'(t) = \nabla g(\phi(t))$$
 when $t \neq 0$ and

$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$

Trajectory of ∇g through \bigcirc using \swarrow

$$\phi'(t) = \nabla g(\phi(t))$$
 when $t \neq 0$ and

$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$

Trajectory of ∇g through \bigcirc using \swarrow

$$\phi'(t) = \nabla g(\phi(t))$$
 when $t \neq 0$ and

$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$

= outgoing evec. of of (Hess
$$g$$
)(r_3)

Trajectory of ∇g through \bigcirc using \swarrow

$$\phi'(t) = \nabla g(\phi(t))$$
 when $t \neq 0$ and

$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$

= outgoing evec. of of (Hess
$$g$$
)(r_3)

 r_1 , r_3 are connected by steepest ascent paths using outgoing eigenvectors

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$

$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$

$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$

$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

infinitely many routing points

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$

$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

infinitely many routing points

g is not Morse

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$

finitely many routing points

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$

finitely many routing points

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$

finitely many routing points

g is Morse

Theorem

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 \exists semialgebraic set $S \subset \mathbb{R}^n$

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

Theorem

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 \exists semialgebraic set $S \subset \mathbb{R}^n$

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

Theorem

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 \exists semialgebraic set $S \subset \mathbb{R}^n$

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

Theorem

 C_2

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 \exists semialgebraic set $S \subset \mathbb{R}^n$

perturb using graded lex. order

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

Theorem

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 \exists semialgebraic set $S \subset \mathbb{R}^n$

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

Theorem

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 \exists semialgebraic set $S \subset \mathbb{R}^n$

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n)\in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

is a routing function

Proof Idea: Clever application of Sard's Theorem twice

Length ≈

Length ≈

Length ≈ 11.3572

Length ≈ 11.3572

Given
$$f \in \mathbb{Z}[x_1, ..., x_n]$$
 $d = \deg(f) \ge 2$
 $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$ $n \ge 2$
 $(c_1, ..., c_n) \in \mathbb{Z}^n$
such that
 $g = \frac{f^2}{((x_1 - c_1) + \cdots + (x_n - c_n)^2 + 1)^{d+1}}$

Length ≈ 11.3572

Given
$$f \in \mathbb{Z}[x_1, ..., x_n]$$
 $d = \deg(f) \ge 2$
 $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$ $n \ge 2$
 $(c_1, ..., c_n) \in \mathbb{Z}^n$
such that

$$g = \frac{f^2}{((x_1 - c_1) + \cdots + (x_n - c_n)^2 + 1)^{d+1}}$$
is a routing function

Find
$$A$$
 such that Length $\leq A(n, d, H, c_1, \dots, c_n, p, q)$

$$H = \max \left| \text{coefficients of } f \right|$$

3. Length Bound: Theorem

3. Length Bound: Theorem

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by $4nr(6d + 4)^{n-1}$

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

1. Radius Bound

- 1. Radius Bound
- 2. Trajectory Bound

- 1. Radius Bound
- 2. Trajectory Bound
- 3. Proof Sketch

 $M = \min g(r)$, r is a routing point of g

 $M = \min g(r)$, r is a routing point of g

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$ $\{g \ge \varepsilon\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$ $\{g \ge \varepsilon\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$ $\{g \ge \varepsilon\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$

 $M = \min g(r)$, r is a routing point of g $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$

 $M = \min g(r), r \text{ is a routing point of } g \ge ?$ $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$

 $M = \min g(r), r \text{ is a routing point of } g \ge (?) > 0$ $\varepsilon = \min\{g(p), g(q), M\}$

Connectivity path for p, q is contained in $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

M bound

Application of DMM bound in [Emiris, et al. 2010]

p and *q* in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

Application of bound in [Basu, Roy. 2010]

where

radius bound

nere
$$r = \left(120A_1 A_2 H d \left(c_1^2 + \dots + c_n^2 + 1 \right) \right)^{4n^3 (6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

M bound

Application of DMM bound in [Emiris, et al. 2010]

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

Application of bound in [Basu, Roy. 2010]

where

radius bound

here radius be
$$r = n \left(120A_1A_2Hd \left(c_1^2 + \dots + c_n^2 + 1 \right) \right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

M bound

Application of DMM bound in [Emiris, et al. 2010]

We can contain
$$\left\{g \geq \frac{A_1}{A_2}\right\}$$
 in a ball of radius r .

Length of a trajectory of ∇g in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Length of a trajectory of ∇g in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory_i \in connected component i of $g^{-1}((a,b)) \cap B$ $\sum_{i} \text{Length}(\text{trajectory}_i) \leq 2nr(6d+4)^{n-1}$

Length of a trajectory of ∇g in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory_i \in connected component i of $g^{-1}((a,b)) \cap B$ $\sum_{i} \text{Length}(\text{trajectory}_i) \leq 2nr(6d+4)^{n-1}$

Length of a trajectory of ∇g in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory_i \in connected component i of $g^{-1}((a,b)) \cap B$ $\sum_{i} \text{Length}(\text{trajectory}_i) \leq 2nr(6d+4)^{n-1}$

Length of a trajectory of ∇g in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory_i \in connected component i of $g^{-1}((a,b)) \cap B$

$$\sum_{i} \text{Length(trajectory}_{i}) \leq 2nr(6d + 4)^{n-1}$$

Proof Idea: Motivated by [D'Acunto, Kurdyka. 2004]

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

p and q in a same component of $\{f \neq 0\}$ can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

$$4nr(6d+4)^{n-1}$$

$$4nr(6d+4)^{n-1}$$

Total = Length of path
Length =
$$in g^{-1}((g(p), a))$$
 + Length of path
 $in g^{-1}((a, b))$

$$4nr(6d+4)^{n-1}$$

Total = Length of path
Length =
$$in g^{-1}((g(p), a))$$
 + Length of path
 $in g^{-1}((a, b))$

$$4nr(6d+4)^{n-1}$$

Total = Length of path
Length =
$$in g^{-1}((g(p), a))$$
 + Length of path
 $in g^{-1}((a, b))$

$$4nr(6d+4)^{n-1}$$

Total Length of path
$$=$$
 Length of path $\inf g^{-1}\left((g(p),a)\right)$ + Length of path $\inf g^{-1}\left((a,b)\right)$ $\leq 2 \cdot 2nr(6d+4)^{n-1}$

• Rigorously tracing steepest ascent paths

Rigorously tracing steepest ascent paths

Rigorously tracing steepest ascent paths

Rigorously tracing steepest ascent paths

Improve bounds

Rigorously tracing steepest ascent paths

- Improve bounds
- Complexity analysis