Connectivity in Semialgebraic Sets

Hoon Hong! James Rohal
hong@ncsu.edu jjrohal@ncsu.edu
Mohab Safey El Din? Eric Schost?
Mohab.Safey@lip6.fr eschost@uwo.ca

! North Carolina State University, Raleigh, NC 27695, USA
2 Université Pierre et Marie Curie, Paris 6, France

INRIA Paris-Rocquencourt, PolSys Project-Team
3 University of Western Ontario, London, Ontario, Canada

April 29, 2014

NCSU Symbolic Computation Seminar

Problem: Connectivity

Problem: Connectivity

Problem: Connectivity

Problem: Connectivity

False

Problem: Connectivity

Problem: Connectivity

—x‘i’—x%an%
®

True

Problem: Connectivity

Input
f € Z|x1,...,xu), squarefree,
finitely many singular points,
nx2,deg(f)=1
® Q' n{f#0;

—xcl)’—x%an%
O

True

Problem: Connectivity

Input
f € Z|x1,...,xu), squarefree,
finitely many singular points,
nx2,deg(f)=1

@ 0cQ' Ny #0;
Output

True
if @, arein asame

semialgebraically
connected component

of 1f # 0}

False
otherwise

— x? — x% -+ x%
O
True

Motivations and Previous Works

* Fundamental in computational real algebraic geometry.
* Many important applications in science and engineering.
* Previous work:

1975 Collins

1983 Schwartz, Sharir

1984 Arnon, Collins, McCallum

1987 Canny, Roy

1988 Arnon, McCallum

1989 Alonso, Raimondo

1992 Feng, Grigor’ev, Vorobjov

1993 Hong

1994 Heintz, Roy, Solerno

1996 Basu, Pollack, Roy

2008 Hong, Quinn

2011 Safey El Din, Schost

2012 Basu, Roy, Safey El Din, Schost

2013 Basu, Roy

Method: Overview
Input: f(x1, x2), @, ©

Method: Overview

Input: f(x1, x2), ‘ ,

Method: Overview

Input: f(x1, x2), ‘ ,

Method: Overview

Input: f(x1, x2), ‘ ,
f2

1. §=
(3 + 5+ 1)

Method: Overview

Input: f(x1, x2), ‘ ,
f2

1. §=
(3 + 5+ 1)

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

Method: Overview

Input: f(x1, x2), @, ©

f2
L &= 2 deg(f)+1
(xl + x% + 1)

2: Solve Vg(x) =0Ag(x) #0

Method: Overview

Input: f(x1, x2), @, ©
f2
(x + 3+ 1)

1: &=

2: Solve Vg(x) =0Ag(x) #0

O 3: Find eigenvectors of (Hess ¢)(®)

Method: Overview

Input: f(x1, x2), C 3

f2
L &= 2 deg(f)+1
(xl + x% + 1)

2: Solve Vg(x) =0Ag(x) #0

3: Find eigenvectors of (Hess ¢)(®)

Method: Overview

Input: f(x1, x2), C 3

f2
L &= 2 deg(f)+1
(xl + x% + 1)

2: Solve Vg(x) =0Ag(x) #0

:{)i(}:. 3: Find eigenvectors of (Hess g)(®)

Method: Overview

. f(xll x2)/ ‘ ’
f2
(3 + 5+ 1)

: Solve Vg(x) =0Ag(x) #0

: & =

: Find eigenvectors of (Hess g)(@®)

: Steepest ascent using
outgoling eigenvectors

Method: Overview

. f(xl, X2), ‘ ’

2
: 8= f

(3 + 5+ 1)

: Solve Vg(x) =0Ag(x) #0

: Find eigenvectors of (Hess g)(@®)

: Steepest ascent using posttive

Outgoing eigenvectors /ezgenvalue

Method: Overview

Input: f(x1, x2), ‘ ,

1:

f2
Solve Vg(x) =0A g(x) #0

Find eigenvectors of (Hess ¢)(®)

Steepest ascent using % POSltlie
eigenvalue

outgoling eigenvectors

Method: Overview

Input: f(x1, x2), ‘ ,

1:

f2
Solve Vg(x) =0A g(x) #0

Find eigenvectors of (Hess ¢)(®)

Steepest ascent using % POSltlie
eigenvalue

outgoling eigenvectors

Method: Overview

Input: f(x1, x2), ‘ ,

1:

f2
Solve Vg(x) =0A g(x) #0

Find eigenvectors of (Hess ¢)(®)

Steepest ascent using % POSltlie
eigenvalue

outgoling eigenvectors

Method: Overview

Input: f(x1, x2), ‘ ,

1:

f2
Solve Vg(x) =0A g(x) #0

Find eigenvectors of (Hess ¢)(®)

Steepest ascent using % POSltlie
eigenvalue

outgoling eigenvectors

Method: Overview

Input: f(x1, x2), ‘ ,

1:

f2
Solve Vg(x) =0A g(x) #0

Find eigenvectors of (Hess ¢)(®)

Steepest ascent using % POSltlie
eigenvalue

outgoling eigenvectors

Method: Overview

Input: f(x1, x2), ‘ ,

1:

f2
Solve Vg(x) =0A g(x) #0

Find eigenvectors of (Hess ¢)(®)

Steepest ascent using % POSltlie
eigenvalue

outgoling eigenvectors

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

3: Find eigenvectors of (Hess g)(®)
4: Steepest ascent using / Positive
outgoing eigenvectors & ©3 envalue

5: Form adjacency matrix

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

(5) @ 3: Find eigenvectors of (Hess g)(®)

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

1: §=

5: Form adjacency matrix

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix

N

N OOl W=

OO OO R OO -
SO O FrR OO O N
_0 O O O O W
_0 O O Ok O =
OO OO OO Ul
SO OO OO OO O
QOO Rk OO

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

1: §=

2: Solve Vg(x) =0Ag(x) #0

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix

N
A

Closure of adjacency matrix

N OOl W=

OO OO R OO -
SO O FrR OO O N
_0 O O O O W
_0 O O O~k O
OO OO OO Ul
SO OO OO OO O
QOO Rk OO

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix

N
A

Closure of adjacency matrix

N OOl W=

—_ O O R
—_, OO R R Rk =) N
_O O == =W
_O O = = s
OO R OO OO U
O R OO OO O O
— OO R R Pk -

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix

N
A

Closure of adjacency matrix

7: Steepest ascent from @

N OOl W=

—_ O O R
—_, OO R R Rk =) N
_O O == =W
—_ O O FR R) =)
OO R OO OO U
O R OO OO O O
—_O O = = e

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using g pos ztzz;e
eigenvalue

outgoling eigenvectors

U1

: Form adjacency matrix

N
A

Closure of adjacency matrix

7: Steepest ascent from @

N OOl W=

—_ O O R
—_, OO R R Rk =) N
_O O == =W
—_ O O FR R) =)
OO R OO OO U
O R OO OO O O
—_O O = = e

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix

N
A

Closure of adjacency matrix

7: Steepest ascent from @

N OOl W=

—_ O O R
—_, OO R R Rk =) N
_O O == =W
—_ O O FR R) =)
OO R OO OO U
O R OO OO O O
—_O O = = e

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

1: §=

2: Solve Vg(x) =0Ag(x) #0

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using Iz POSZ“W
outgoing eigenvectors & ©3 envalue
5: Form adjacency matrix

6: Closure of adjacency matrix

1 2 3 4 5 6 7
111110 0 1] 7: Steepest ascent from @
2 /1 1 1 1 0 0 1
3 (1 1110 01 8: Steepest ascent from
4 (1 1 1 1 0 O 1
510 0 0 01 0 O
6 [0 OO OO0 1 O
7 11T 1 1 1 0 0 1

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

1: §=

2: Solve Vg(x) =0Ag(x) #0

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using Iz POSZ“W
outgoing eigenvectors & ©3 envalue
5: Form adjacency matrix

6: Closure of adjacency matrix

1 2 3 4 5 6 7
111110 0 1] 7: Steepest ascent from @
2 /1 1 1 1 0 0 1
3 (1 1110 01 8: Steepest ascent from
4 (1 1 1 1 0 O 1
510 0 0 01 0 O
6 [0 OO OO0 1 O
7 11T 1 1 1 0 0 1

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix

1 2 3 45 ¢ 7 6: Closure of adjacency matrix
11111001 7: Steepest ascent from @
2 (11 1 1 0 0 1
51111001 8: Steepest ascent from
4 11 1 1 1 0 0 1
5100 0 0100 9: Read matrix
6 |0 00 0 0 10
7111 1 1 0 0 1

I
L
A

Method: Overview

Input: f(x1, x2), ‘ ,
f2
(3 + 5+ 1)

2: Solve Vg(x) =0Ag(x) #0

1: §=

: Find eigenvectors of (Hess g)(@®)

O

4: Steepest ascent using S pos ztzz;e
eigenvalue

outgoling eigenvectors

5: Form adjacency matrix
1 2 3 45 ¢ 7 6: Closure of adjacency matrix
11®1 1001 7: Steepest ascent from @
2 M1 1100 1
51111001 8: Steepest ascent from
4 11 1 1 1 0 0 1
5100 0 0100 9: Read matrix
6 |0 00 0 0 10
71111100 1

Method: Overview

NN OOl s WO N =

O

1 2
1 @
|® 1

1 1

1 1

0 O

0 O
11

— OO R) Rk =) W

_ O O = = =

OO PR OO o O Ul

O R O OO OO O

N

—_ O O R R

Input

. f(xll x2)/ ‘ ’
f2
(3 + 5+ 1)

Solve Vg(x) =0A g(x) #0

g:

3: Find eigenvectors of (Hess g)(®)

4: Steepest ascent using positive
outgoling eigenvectors / eigenvalie

5: Form adjacency matrix

6: Closure of adjacency matrix

7: Steepest ascent from @

8: Steepest ascent from

9: Read matrix

Output:

True

Research Challenges

1. Correctness

Research Challenges

1. Correctness
2. Termination

Research Challenges

1. Correctness
2. Termination

3. Length Bound

1. Correctness: Theorem

1. Correctness: Theorem

Let ¢ be a routing function.

1. Correctness: Theorem

Let ¢ be a routing function.

e ¢o(x) = 0as ||x|| = o
* g(x) >0

1. Correctness: Theorem

Let ¢ be a routing function.

e ¢o(x) = 0as ||x|| = o
* g(x) >0

1. Correctness: Theorem

Let ¢ be a routing function.

e g(x) = 0as |[x|| = o
* g(x) 20
* finitely many routing points

Vg(x) =0Ag(x) #0

1. Correctness: Theorem

Let ¢ be a routing function.

e ¢o(x) = 0as ||x|| = o
* g(x) >0

finitely many routing points
Vg(x) =0Aglx) #0
routing points are nondegenerate

det(Hess ¢)(x) # 0

1. Correctness: Theorem

Let ¢ be a routing function.

e g(x) = 0as |[x|| = o

* 8(x) 20

* finitely many routing points
Vg(x) =0Ag(x) #0

* routing points are nondegenerate

det(Hess ¢)(x) # 0

* norms of Vg and Hess ¢
are bounded

1. Correctness: Theorem

Let ¢ be a routing function.

e g(x) = 0as ||x]| = o0

* 8(x) 20

* finitely many routing points
Vg(x) =0Ag(x) #0

* routing points are nondegenerate

det(Hess ¢)(x) # 0

* norms of Vg and Hess ¢
are bounded

f2
(22 4 32 4 1) e8]

Example: ¢ =

1. Correctness: Theorem

Let ¢ be a routing function.

Any two routing points in a same connected component of {g 7# 0}
are connected by steepest ascent paths using outgoing eigenvectors.
e ¢o(x) > 0as ||x|| = o0
°* 8(x) 20
* finitely many routing points

Vg(x) =0Ag(x) #0
* routing points are nondegenerate

det(Hess ¢)(x) # 0 O

* norms of Vg and Hess ¢
are bounded

f2
(3 +23+1

Example: §=)deg(]

1. Correctness: Theorem

positive

Let ¢ be a routing function. eigenvalue

Any two routing points in a same connected component of {¢ #0} /

are connected by steepest ascent paths using outgoing eigenvectors.

Example: ¢ =

g(x) = 0as ||x|| = o0

g(x) =0

finitely many routing points
Vg(x) =0Ag(x) #0

routing points are nondegenerate

det(Hess ¢)(x) # 0 O

norms of V¢ and Hess ¢
are bounded

f2
(3 +23+1

)deg(f)—l—l

1. Correctness: Theorem

positive

Let ¢ be a routing function. eigenvalue

Any two routing points in a same connected component of {¢ #0} /

are connected by steepest ascent paths using outgoing eigenvectors.

Example: ¢ =

g(x) = 0as ||x|| = o0

g(x) =0

finitely many routing points
Vg(x) =0Ag(x) #0

routing points are nondegenerate

det(Hess ¢)(x) # 0 O

norms of V¢ and Hess ¢
are bounded

f2
(3 +23+1

)deg(f)—l—l

1. Correctness: Preliminaries

1. Correctness: Preliminaries

Trajectory of Vg through @

¢'(t) = Vg(o(t))
¢(0) = @

1. Correctness: Preliminaries

Trajectory of Vg through @
¢'(t) = Vg(o(t))
$(0) = @ 0, o) /\

1. Correctness: Preliminaries

Trajectory of Vg through @
¢'(t) = Vg(o(t))
$(0) = @ 0, o) /\

1. Correctness: Preliminaries

Trajectory of Vg through @

¢'(t) = Vg (¢(t)) o
¢(0) = @ (0,) 7

10

1. Correctness: Preliminaries

Trajectory of Vg through @

¢'(t) = Vg (¢(t)) o
¢(0) = @ (0,) 7

11

1. Correctness: Preliminaries

Trajectory of Vg through @

¢’ (t) = Vg (¢(t))
$(0) = @

12

1. Correctness: Preliminaries

Trajectory of Vg through @ using £&

¢'(t) = Vg(op(t)) whent#0
and

lim ¢(t) = @

t—0T

()
|
0+ ¢ (£

= &7

12

1. Correctness: Preliminaries

Trajectory of Vg through @ using £&

¢'(t) = Vg(op(t)) whent#0
and

lim ¢(t) = @

t—0T

()
|
0+ ¢ (£

= &7

12

1. Correctness: Preliminaries

Trajectory of Vg through @ using £&

¢'(t) = Vg(¢(t)) whent#0

and
i o=@
and dest(¢) = lim ¢(t)
¢’ (t)

= &7

lim

=0+ (|97 (¢)]

12

1. Correctness: Preliminaries

Trajectory of Vg through @ using £&

¢'(t) = Vg(¢(t)) whent#0
and

lim ¢(t) = @

t—0T

/
lim (P/(t) = L2 £& = outgoing evec. of
ot o (8] of (Hloss £)(rn)
connected by steepest ascent paths

r1, ¥3 are . . .
using outgoing eigenvectors

12

1. Correctness: Preliminaries

Trajectory of Vg through @ using £&

¢'(t) = Vg(¢(t)) whent#0

and 7
fim ¢(t) = @
and
A0
| —
ST - &

any two routing points re

in a connected comp.

connected by steepest ascent paths
using outgoing eigenvectors

12

1. Correctness: Preliminaries

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢) = p} U {p}

A

x = trajectory of V¢ through x using V¢ (x)

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢) = p} U {p}

A

x = trajectory of V¢ through x using V¢ (x)

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢) = p} U {p}

A

x = trajectory of V¢ through x using V¢ (x)

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢) = p} U {p}

A

x = trajectory of V¢ through x using V¢ (x)

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢x) = p} U {p}

A

¢ = trajectory of Vg through x using Vg(x)

W(p)

13

1. Correctness: Preliminaries

stable manifold of p: W°(p) = {x € R" | dest(¢p) = p} U {p}

A

¢ = trajectory of Vg through x using Vg(x)

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢) = p} U {p}

A

x = trajectory of V¢ through x using V¢ (x)

index of p = # of negative eigenvalues = dim W*(p)
of (Hess ¢)(p)

13

1. Correctness: Preliminaries

stable manifold of p: W*(p) = {x € R" | dest(¢) = p} U {p}

A

¢ = trajectory of Vg through x using Vg(x)

i
+® +®

)

index of p = # of negative eigenvalues = dim W*(p)
of (Hess ¢)(p)

13

1. Correctness: Proof Sketch

14

1. Correctness: Proof Sketch

Let ¢ be a routing function.

Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

14

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Lemma
If Vg(x) # 0, then the destination of a trajectory through x is a routing point.

14

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Lemma

If Vg(x) # 0, then the destination of a trajectory through x is a routing point.

14

1. Correctness: Proof Sketch

Let ¢ be a routing function.

Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

15

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Lemma
Every connected component has at least one local max.

15

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}

are connected by steepest ascent paths using outgoing eigenvectors.

Lemma
Every connected component has at least one local max.

15

1. Correctness: Proof Sketch

Let ¢ be a routing function.

Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

16

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Lemma
Each connected component is a disjoint union of stable manifolds.

16

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Lemma
Each connected component is a disjoint union of stable manifolds.

16

1. Correctness: Proof Sketch

Let ¢ be a routing function.

Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

max

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index =n
max

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index =n
max

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index =n
max

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index =n
max

~\

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index =n
max

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 1: one and only one max in connected component

index =n
max

<\

index <n

17

1. Correctness: Proof Sketch

Let ¢ be a routing function.

Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: Proof Sketch

Let ¢ be a routing function.
Any two routing points in a same connected component of {g 7 0}
are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

18

1. Correctness: What if g is not a routing function?

19

1. Correctness: What if g is not a routing function?

f = (x%er%—Z) (x%er%)

19

1. Correctness: What if g is not a routing function?

f2
g —
(3 + 5+ 1)

f = (x%er%—Z) (x%er%)

19

1. Correctness: What if g is not a routing function?

f2
g —
(3 + 5+ 1)

infinitely many routing points

f= (x%er%—Z) (x%er%)

19

1. Correctness: What if g is not a routing function?

f2
g —
(3 + 5+ 1)

infinitely many routing points

f = (x%er%—Z) (x%er%)

19

1. Correctness: What if g is not a routing function?

f2
(3 + 5+ 1)

g:

infinitely many routing points

-

&
VP
V 4

f = (x%er%—Z) (x%er%)

19

1. Correctness: What if g is not a routing function?

f2
g —
(3 + 5+ 1)

infinitely many routing points

d

&
y

det(Hess ¢)(e) =0

f = (x%er%—Z) (x%er%)

19

1. Correctness: What if g is not a routing function?

f2

g:

(x5 + x5+ 1)

deg(f)+1

(x% -+ x% - 2) (x% -+ x%)

infinitely many routing points

—»—4-_

/' r
//- .
£ S
4 8 ,-/ ,"/
L /
&
7

det(Hess ¢)(e) =0

19

1. Correctness: What if g is not a routing function?

f2

g:

(x5 + x5+ 1)

deg(f)+1

(x% -+ x% - 2) (x% -+ x%)

infinitely many routing points

—

/' r
//- .
£ S
4 8 ,-/ ,"/
L /
&
7

det(Hess ¢)(e) =0

19

1
. C
or
re
ctn
es
S
. F1
1XIng
b
y P
ert
u
rb
ati
10
n

(7
2 + x5 .
5 T
1)deg(f
)+1

g:

20

1. Correctness: Fixing by Perturbation

2 turb
f pertur - f2

s~ o
(x2 + x2 4 1) 98U ((x1 - 002 + (12— 12 +1)

20

1. Correctness: Fixing by Perturbation

2 turb
f pertur g _ f2

(X% -+ X% -+ 1)deg(f)+1 ((x1 — 0)2 + (XQ — 1)2 + 1)

g:

deg(f)+1

finitely many routing points

20

1. Correctness: Fixing by Perturbation

2 turb
f pertur g _ f2

(x% 4 X% 4 1)de8(f)+1 ((xl B 0)2 4 (x2 B 1)2 4+ 1)

g:

deg(f)+1

finitely many routing points

20

1. Correctness: Fixing by Perturbation

2 turb
f pertur g _ f2

(X% -+ X% -+ 1)deg(f)+1 ((x1 — 0)2 + (XQ — 1)2 + 1)

g:

deg(f)+1

finitely many routing points

20

1. Correctness: Fixing by Perturbation

2 turb
f pertur 2

s~ des(n1 > 87

(x2 + x5 + 1) ((x1 =02+ (x2 = 1)* +1

finitely many routing points

det(Hess ¢)(e) # 0

)deg(f)+1

20

1. Correctness: Fixing by Perturbation

2 turb
f pertur 2

s~ des(n1 > 87

(x2 + x5 + 1) ((x1 =02+ (x2 = 1)* +1

finitely many routing points

det(Hess ¢)(e) # 0

)deg(f)+1

20

21

2. Termination: Theorem

VfeZ|xq,..., X
J semialgebraic set S C IR”

dim (R"\ S) < n
V(c1,...,cn) €S

f2

S (1= 1)+ (n— a2+ 1) 8D

is a routing function

21

2. Termination: Theorem

VfeZ|xq,..., X 2, — R*\'S

J semialgebraic set S C IR”
dim (R"\ S) < n
V(c1,...,cn) €S

f2
(v =)+ (= e)? + 1) 7B

g:

is a routing function

21

2. Termination: Theorem

VfeZ|xq,..., X :
J semialgebraic set S C IR”

dim (R"\ S) < n
\V/(Cl,...,Cn) cS (0,0)

—R?\ S

is a routing function

21

2. Termination: Theorem

VfeZ|xq,..., X €2 — R*\'S
J semialgebraic set S C IR”
dim (R"\ S) < n
\V’(Cl, - ,Cn) c S (0, 0) i
f2
((xl _ Cl)z 4+ .o 4 (xn _ Cn)Z + 1)deg(f)+1

g:

is a routing function

22

2. Termination: Theorem

2
\V/f - Z[xl, ey xn] €2 (T 4’ R \ 5
J semialgebraic set S C IR”

dim (R"\ S) < n

V(c1,...,cn) €8S 0,00

f2
(v =)+ (= e)? + 1) 7B

g:

is a routing function

22

2. Termination: Theorem

VfeZ|xq,..., X C2

J1 semialgebraic set S C R”
dim (R"\ S) < n
Y(c1,...,cn) €S

—R?\ S

is a routing function

Proof Idea: Sard’s Theorem and Constant Rank Theorem

23

3. Length Bound: Problem

24

3. Length Bound: Problem

p

24

3. Length Bound: Problem

p

24

3. Length Bound: Problem

p

Length of
connectivity path = 8.4856

24

3. Length Bound: Problem

p Given f € Z|xq,..., Xp] d=deg(f)

p,q €Q"N{f #0} n
(Cl,...,Cn) cZ"

> 2
> 2

such that
f2
g — o d+1
((x1 —c1) +---+ (xn —cn)*+1)
q is a routing function

Length of
connectivity path = 8.4856

24

3. Length Bound: Problem

p

Length of
connectivity path = 8.4856

Given f € Z|xy,...,xy] d=deg(f)=2
p.q €QNLf # 0} n =2
(Cl,...,Cn) cZ"

such that

f2
8= ((x1 _Cl) 4+ oo+ (xn _Cn)z_l_l)d—H

is a routing function

Find A such that
Length<A(n,d, H, c1,...,cn, P, q)

H = max‘coefﬁcients of f ‘

24

3. Length Bound: Theorem

25

3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by
4nr(6d +4)" 1

25

3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by
4nr(6d +4)" 1

where

4n3(6d)>"
r=n (120A1A2Hd (c% b2t 1))

1

Aq
(2dH (& + - - + 3 +2)) " }

e min {g(P),g(q),

25

3. Length Bound: Proof Steps

26

3. Length Bound: Proof Steps

1. Radius Bound

26

3. Length Bound: Proof Steps

1. Radius Bound
2. Trajectory Bound

26

3. Length Bound: Proof Steps

1. Radius Bound
2. Trajectory Bound
3. Proof Sketch

26

3. Length Bound: Radius Bound

27

3. Length Bound: Radius Bound

Connectivity path for p, g is contained in {x € R" | g(x) > ¢}
e =minig(p), g(q), Mj

M =min g(r), r is a routing point of ¢

27

3. Length Bound: Radius Bound

Connectivity path for p, g is contained in {x € R" | g(x) > ¢}
e =minig(p), g(q), M} (¢> ¢)

M =min g(r), r is a routing point of ¢

3. Length Bound: Radius Bound

Connectivity path for p, g is contained in {x € R" | g(x) > ¢}
e =minig(p), g(q), M} (¢> ¢)

M =min g(r), r is a routing point of ¢

>

3. Length Bound: Radius Bound

Connectivity path for p, g is contained in {x € R" | g(x) > ¢}
e =minig(p), g(q), M} (¢> ¢)

M =min g(r), r is a routing point of ¢

3. Length Bound: Radius Bound

Connectivity path for p, g is contained in {x € R" | g(x) > ¢}
e =minig(p), g(q), M} (¢> ¢)

M =min g(r), r is a routing point of ¢

3. Length Bound: Radius Bound

Connectivity path for p, g is contained in {x € R" | g(x) > ¢}
e =minig(p), g(q), M} (¢> ¢)

M =min g(r), r is a routing point of ¢

Exists ball B of radius _? containing {g = ¢}

3. Length Bound: Radius Bound

Connectivity path forp, g is contained in'{x € R" | g(x) > ¢}
e = minig(p), g(q), M} (g> ¢)

M =min g(r), r is a routing point of ¢

Exists ball B of radius _? containing {g = ¢}

3. Length Bound: Radius Bound

Connectivity path forp, g is contained in'{x € R" | g(x) > ¢}
e = minig(p), g(q), M} (g> ¢)

M =min g(r), r is a routing point of ¢ > _ ?

Exists ball B of radius _? containing {g = ¢}

3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by
4nr(6d +4)" 1

where

4n3(6d)>"
r=n (120A1A2Hd (c% b2t 1))

1

Aq
(2dH (& + - - + 3 +2)) " }

e min {g(P),g(q),

28

3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by

a connectivity path of length bounded by

where

4nr(6d +4)" 1

4n3 (6d)>"
r=n (120A1A2Hd (c% b2t 1))

Aq ,
— = min

Aj

{g(P),g(q),

f

1

(2dH (e + -+ +cf +2

)) 1041’13 (5d)5n }

M bound

28

3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by

4nr(6d +4)" 1
where radius bound

” 4n3 (6d4)3"
r=n (120A1A2Hd (c% b2t 1))

. J

1 “
(2dH (¢ + -+ i + ?_))104”3 (5d)° J}
M bound

r

28

3. Length Bound: Theorem

p and g in a same component of {f # 0} can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

where

radius bound

f

r=n (120A1A2Hd (c%+ 2

)) 4n3 (6d4)3"

J

We can contain -

f

1

(2dH (e + -+ +cf +2

)) 1041’13 (5d)5n }

} in a ball of radius r.

M bound

28

3. Length Bound: Trajectory Bound

29

3. Length Bound: Trajectory Bound

Length of a trajectory of Vg in a ball B of radius r
is bounded by
2nr(6d + 4)" 1

29

3. Length Bound: Trajectory Bound

Length of a trajectory of Vg in a ball B of radius r
is bounded by
2nr(6d + 4)" 1

Let trajectory; € connected component 1 of g_l ((a, b)) N B
Y " Length(trajectory;) < 2nr(6d + 4)" "
1

29

3. Length Bound: Trajectory Bound

Length of a trajectory of Vg in a ball B of radius r
is bounded by
2nr(6d + 4)" 1

Let trajectory; € connected component 1 of g_l ((a, b)) N B
Z Length(trajectory;) < 2nr(6d + 4)" !
1

-b

29

3. Length Bound: Trajectory Bound

Length of a trajectory of Vg in a ball B of radius r
is bounded by
2nr(6d + 4)" 1

Let trajectory; € connected component 1 of g_l ((a, b)) N B
Z Length(trajectory;) < 2nr(6d + 4)" !
1

1 -b

29

3. Length Bound: Trajectory Bound

30

3. Length Bound: Trajectory Bound

Proof Idea

30

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vye g (g(x) VeI < Vel

30

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vye g (g(x) VeI < Vel

%y

steep = » shallow «— steep

30

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vye g (g(x) VeI < Vel

%y

steep = » shallow «— steep

Length(trajectory) < Length((2)

30

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vye g (g(x) VeI < Vel

0 = {x | |Vg(x)]|* has a loc. min. at x on g(x) = Constant}

Length(trajectory) < Length((2)

31

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vye g (g(x) VeI < Vel

0 = {x | |Vg(x)]|* has a loc. min. at x on g(x) = Constant}

M

O = {x ’ |V g(x)||* has a crit. pt. at x on g(x) = constant}

Length(trajectory) < Length((2)

31

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vyeg (g(x) Ve < Ve)l
0 = {x | |Vg(x)]|* has a loc. min. at x on g(x) = constant}
C
O = {x ’ |V g(x)||* has a crit. pt. at x on g(x) = constant}
={x|dA € R, (Hess ¢)(x) - Vg(x) = AVg(x)}

Length(trajectory) < Length((2)

31

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vyeg (g(x) Ve < Ve)l
0 = {x | |Vg(x)]|* has a loc. min. at x on g(x) = constant}
C
O = {x ’ |V g(x)||* has a crit. pt. at x on g(x) = constant}
={x|dA € R, (Hess ¢)(x) - Vg(x) = AVg(x)}

Length(trajectory) < Length(Q)) < Length(®)

31

3. Length Bound: Trajectory Bound

Proof Idea

O : C! curve
Vx € ()

vyeg (g(x) Ve < Ve)l
0 = {x | |Vg(x)]|* has a loc. min. at x on g(x) = constant}
C
O = {x ’ |V g(x)||* has a crit. pt. at x on g(x) = constant}
={x|dA € R, (Hess ¢)(x) - Vg(x) = AVg(x)}

Length(trajectory) < Length(Q) < Length(®) < 2nr(6d + 4)"~*

31

3. Length Bound: Proof Sketch

32

3. Length Bound: Proof Sketch

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by
4nr(6d +4)" 1

where

4n3(6d)>"
r=n (120A1A2Hd (c% b2t 1))

1

Aq
(2dH (] + -+ +cf + 2))104”3(501)5” }

e min {g(P),g(q),

32

3. Length Bound: Proof Sketch

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by
4nr(6d +4)" 1

where

4n3(6d)>"
r=n (120A1A2Hd (c% b2t 1))

1
(2dH (] + -+ +cf + 2))104"3<5d)5n }

P

%

q

2‘—; = min {g(P),g(q),

32

3. Length Bound: Proof Sketch

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by
4nr(6d +4)" 1

33

3. Length Bound: Proof Sketch

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by

4nr(6d +4)" !

x and y in a same component of { g > ﬁ—; } can be connected by

a connectivity path of length bounded by
4nr(6d + 4)" 1

33

3. Length Bound: Proof Sketch

p and g in a same component of {f # 0} can be connected by
a connectivity path of length bounded by

4nr(6d +4)" !

x and y in a same component of { g > ﬁ—; } can be connected by

a connectivity path of length bounded by
4nr(6d + 4)" 1

33

3. Length Bound: Proof Sketch

x and y in a same component of { g > ﬁ—; } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

34

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

34

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

34

3. Length Bound: Proof Sketch

x and y in a same component of { g > a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

g = aj

34

3. Length Bound: Proof Sketch

x and y in a same component of { g > a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

34

3. Length Bound: Proof Sketch

x and y in a same component of { g > a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

g = aj

34

3. Length Bound: Proof Sketch

x and y in a same component of { g > a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

g = aj

34

3. Length Bound: Proof Sketch

x and y in a same component of { g > a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

g = aj
— X
0
¢ Y
Total *
Length < Length y)

3. Length Bound: Proof Sketch

x and y in a same component of { g > a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

g = aj

Total ' " -
Le(rjlg?th < Length {y <2:2nr(6d +4)" 1

34

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 1: k =1 routing point in component

g = aj

Total ¥ N -
Le%g?th < Length {y <2-2nr(6d +4)" ! =4nr(6d +4)" !

34

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

35

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

35

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj

35

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in compe

g = aj

35

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g 2bl=1¢=a}

35

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g 2bl=1¢=a}
e ®
*®

35

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj
e ®
‘@

36

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj

b>a

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

{g=aj X

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

{g=aj X

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj

b>a

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj

b>a

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

{g=aj X

37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

{g=aj X
b>a o

18 2 b v
ngjggh < Length E.} + Length)

Y 37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj X
b>a .
g = b}
S Y
Total L‘\ ..

Length = Length l\ﬂ/ + Length < 22;/”/(6d + 4)n -1

Y 37

3. Length Bound: Proof Sketch

x and y in a same component of { g>a } can be connected by

a connectivity path of length bounded by
4nr(6d +4)" 1

Case 2: k> 1 routing points in component

g = aj X
b>a .
g = b}
S Y
Total L‘\ ..

Length < Length l\‘./ + Length < 22;/”/(6d + 4)n -1 — 4”7"(661 n 4)n -1

Y 37

38

Future Work

* Rigorously tracing steepest ascent paths

38

Future Work

* Rigorously tracing steepest ascent paths

38

Future Work

* Rigorously tracing steepest ascent paths

38

Future Work

* Rigorously tracing steepest ascent paths

* Improve bounds

38

Future Work

* Rigorously tracing steepest ascent paths

* Improve bounds

* Complexity analysis

38

