# Connectivity in Semialgebraic Sets

Hoon Hong<sup>1</sup> hong@ncsu.edu

James Rohal<sup>1</sup>
jjrohal@ncsu.edu

Mohab Safey El Din<sup>2</sup> Mohab.Safey@lip6.fr

Éric Schost<sup>3</sup> eschost@uwo.ca

<sup>1</sup>North Carolina State University, Raleigh, NC 27695, USA

<sup>2</sup> Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, PolSys Project-Team

<sup>3</sup> University of Western Ontario, London, Ontario, Canada

April 29, 2014

NCSU Symbolic Computation Seminar

$$f = x_1^3 - x_1^2 + x_2^2$$

$$f = x_1^3 - x_1^2 + x_2^2$$



$$f = x_1^3 - x_1^2 + x_2^2$$



$$f = x_1^3 - x_1^2 + x_2^2$$



**False** 

$$f = x_1^3 - x_1^2 + x_2^2$$



$$f = x_1^3 - x_1^2 + x_2^2$$



True

 $\bullet, \bullet \in \mathbb{Q}^n \cap \{f \neq 0\}$ 

#### Input

 $f \in \mathbb{Z}[x_1, ..., x_n]$ , squarefree, finitely many singular points,  $n \ge 2$ ,  $\deg(f) \ge 1$ 

$$f = x_1^3 - x_1^2 + x_2^2$$



True

#### Input

 $f \in \mathbb{Z}[x_1, ..., x_n]$ , squarefree, finitely many singular points,  $n \ge 2$ ,  $\deg(f) \ge 1$ 



#### Output

#### True

if  $\bullet$ ,  $\bullet$  are in a same semialgebraically connected component of  $\{f \neq 0\}$ 

#### **False**

otherwise





#### True

#### Motivations and Previous Works

- Fundamental in computational real algebraic geometry.
- Many important applications in science and engineering.
- Previous work:
  - 1975 Collins
  - 1983 Schwartz, Sharir
  - 1984 Arnon, Collins, McCallum
  - 1987 Canny, Roy
  - 1988 Arnon, McCallum
  - 1989 Alonso, Raimondo
  - 1992 Feng, Grigor'ev, Vorobjov
  - 1993 Hong
  - 1994 Heintz, Roy, Solerno
  - 1996 Basu, Pollack, Roy
  - 2008 Hong, Quinn
  - 2011 Safey El Din, Schost
  - 2012 Basu, Roy, Safey El Din, Schost
  - 2013 Basu, Roy











Input: 
$$f(x_1, x_2)$$
,  $f(x_1, x_2)$ 



**Input:** 
$$f(x_1, x_2)$$
, ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

**2:** Solve 
$$\nabla g(x) = 0 \land g(x) \neq 0$$



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

**2:** Solve 
$$\nabla g(x) = 0 \land g(x) \neq 0$$



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- **4:** Steepest ascent using outgoing eigenvectors



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- **5:** Form adjacency matrix



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- **5:** Form adjacency matrix



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- **5:** Form adjacency matrix



**Input:** 
$$f(x_1, x_2)$$
, • ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

**2:** Solve 
$$\nabla g(x) = 0 \land g(x) \neq 0$$

- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix



1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from



**Input:**  $f(x_1, x_2)$ , ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from



**Input:** 
$$f(x_1, x_2)$$
, ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

**2:** Solve 
$$\nabla g(x) = 0 \land g(x) \neq 0$$

- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from



**Input:**  $f(x_1, x_2)$ , ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from



**Input:** 
$$f(x_1, x_2)$$
, ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

**2:** Solve 
$$\nabla g(x) = 0 \land g(x) \neq 0$$

- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from



**Input:**  $f(x_1, x_2)$ , ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from
- **9:** Read matrix



**Input:**  $f(x_1, x_2)$ , , ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

- **2:** Solve  $\nabla g(x) = 0 \land g(x) \neq 0$
- **3:** Find eigenvectors of (Hess g)( $\bullet$ )
- 4: Steepest ascent using outgoing eigenvectors positive eigenvalue
- 5: Form adjacency matrix
- **6:** Closure of adjacency matrix
- 7: Steepest ascent from
- 8: Steepest ascent from
- **9:** Read matrix



**Input:**  $f(x_1, x_2)$ , • ,

1: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$

**2:** Solve 
$$\nabla g(x) = 0 \land g(x) \neq 0$$

**3:** Find eigenvectors of (Hess g)( $\bullet$ )

4: Steepest ascent using outgoing eigenvectors positive eigenvalue

5: Form adjacency matrix

**6:** Closure of adjacency matrix

7: Steepest ascent from

8: Steepest ascent from

**9:** Read matrix

Output: True

# Method: Demo

1. Correctness

- 1. Correctness
- 2. Termination

- 1. Correctness
- 2. Termination
- 3. Length Bound





- $g(x) \rightarrow 0$  as  $||x|| \rightarrow \infty$
- $g(x) \geq 0$



- $g(x) \rightarrow 0$  as  $||x|| \rightarrow \infty$
- $g(x) \geq 0$



• 
$$g(x) \rightarrow 0$$
 as  $||x|| \rightarrow \infty$ 

- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$







- $g(x) \geq 0$
- finitely many routing points  $\nabla g(x) = 0 \land g(x) \neq 0$
- routing points are nondegenerate  $det(Hess g)(x) \neq 0$







- $g(x) \geq 0$
- finitely many routing points  $\nabla g(x) = 0 \land g(x) \neq 0$
- routing points are nondegenerate  $det(Hess\ g)(x) \neq 0$
- norms of  $\nabla g$  and Hess g are bounded







- $g(x) \geq 0$
- finitely many routing points  $\nabla g(x) = 0 \land g(x) \neq 0$
- routing points are nondegenerate  $det(Hess g)(x) \neq 0$
- norms of  $\nabla g$  and Hess g are bounded

Example: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$





Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

- $g(x) \rightarrow 0$  as  $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points  $\nabla g(x) = 0 \land g(x) \neq 0$
- routing points are nondegenerate  $det(Hess g)(x) \neq 0$
- norms of  $\nabla g$  and Hess g are bounded

Example: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$



Let *g* be a routing function.

positive eigenvalue

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

- $g(x) \rightarrow 0$  as  $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points  $\nabla g(x) = 0 \land g(x) \neq 0$
- routing points are nondegenerate  $det(Hess g)(x) \neq 0$
- norms of  $\nabla g$  and Hess g are bounded

Example: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$



Let *g* be a routing function.

positive eigenvalue

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

- $g(x) \rightarrow 0$  as  $||x|| \rightarrow \infty$
- $g(x) \geq 0$
- finitely many routing points

$$\nabla g(x) = 0 \land g(x) \neq 0$$

- routing points are nondegenerate  $det(Hess g)(x) \neq 0$
- norms of  $\nabla g$  and Hess g are bounded

Example: 
$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$



Trajectory of  $\nabla g$  through  $\bigcirc$ 

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$ 

### Trajectory of $\nabla g$ through

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$ 



### Trajectory of $\nabla g$ through $\bigcirc$



## Trajectory of $\nabla g$ through $\bigcirc$

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$ 



## Trajectory of $\nabla g$ through

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$ 





#### Trajectory of $\nabla g$ through $\bigcirc$

$$\phi'(t) = \nabla g(\phi(t))$$
 $\phi(0) = \bullet$ 



# Trajectory of $\nabla g$ through $\bigcirc$ using $\swarrow$



$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$



## Trajectory of $\nabla g$ through $\bigcirc$ using $\swarrow$



$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$



## Trajectory of $\nabla g$ through $\bigcirc$ using $\swarrow$



$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$



### Trajectory of $\nabla g$ through $\bigcirc$ using $\swarrow$



$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$



= outgoing evec. of of (Hess 
$$g$$
)( $r_3$ )

connected by steepest ascent paths using outgoing eigenvectors

# Trajectory of $\nabla g$ through $\bigcirc$ using $\swarrow$



$$\lim_{t\to 0^+} \phi(t) = \bullet$$

and

$$\lim_{t\to 0^+} \frac{\phi'(t)}{\|\phi'(t)\|} = \checkmark$$



any two routing points are in a connected comp.

connected by steepest ascent paths using outgoing eigenvectors











**stable manifold of** p:  $W^s(p) = \{x \in \mathbb{R}^n \mid \text{dest}(\phi_x) = p\} \cup \{p\}$   $\phi_x = \text{trajectory of } \nabla g \text{ through } x \text{ using } \widehat{\nabla g(x)}$ 



**index of** p = # of negative eigenvalues = dim  $W^s(p)$  of (Hess g)(p)

**stable manifold of** p:  $W^s(p) = \{x \in \mathbb{R}^n \mid \text{dest}(\phi_x) = p\} \cup \{p\}$   $\phi_x = \text{trajectory of } \nabla g \text{ through } x \text{ using } \widehat{\nabla g(x)}$ 



index of p = # of negative eigenvalues = dim  $W^s(p)$  of (Hess g)(p)

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

#### Lemma

If  $\nabla g(x) \neq 0$ , then the destination of a trajectory through x is a routing point.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

#### Lemma

If  $\nabla g(x) \neq 0$ , then the destination of a trajectory through x is a routing point.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

#### Lemma

Every connected component has at least one local max.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

#### Lemma

Every connected component has at least one local max.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

#### Lemma

Each connected component is a disjoint union of stable manifolds.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

#### Lemma

Each connected component is a disjoint union of stable manifolds.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component

Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.

Case 2: multiple maxes in connected component



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.



Let *g* be a routing function.

Any two routing points in a same connected component of  $\{g \neq 0\}$  are connected by steepest ascent paths using outgoing eigenvectors.





$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$



$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$





$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}}$$



$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$



$$f = \left(x_1^2 + x_2^2 - 2\right) \left(x_1^2 + x_2^2\right)$$



$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$





$$det(Hess g)(\bullet) = 0$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$





$$det(Hess g)(\bullet) = 0$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$





$$det(Hess g)(\bullet) = 0$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}}$$



$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$



$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$



$$g = \frac{f^2}{(x_1^2 + x_2^2 + 1)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{((x_1 - 0)^2 + (x_2 - 1)^2 + 1)^{\deg(f) + 1}}$$



$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - 0)^2 + (x_2 - 1)^2 + 1\right)^{\deg(f) + 1}}$$





$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - \mathbf{0})^2 + (x_2 - \mathbf{1})^2 + 1\right)^{\deg(f) + 1}}$$





$$\det(\operatorname{Hess} g)(\bullet) \neq 0$$

$$g = \frac{f^2}{\left(x_1^2 + x_2^2 + 1\right)^{\deg(f) + 1}} \xrightarrow{\text{perturb}} g = \frac{f^2}{\left((x_1 - 0)^2 + (x_2 - 1)^2 + 1\right)^{\deg(f) + 1}}$$





$$det(Hess g)(\bullet) \neq 0$$

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 $\exists$  semialgebraic set  $S \subset \mathbb{R}^n$ 

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$

$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 $\exists$  semialgebraic set  $S \subset \mathbb{R}^n$ 

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$



$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 $\exists$  semialgebraic set  $S \subset \mathbb{R}^n$ 

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$



$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

$$\forall f \in \mathbb{Z}[x_1, \dots, x_n] \qquad \qquad \boldsymbol{c}_2$$

 $\exists$  semialgebraic set  $S \subset \mathbb{R}^n$ 

$$\dim (\mathbb{R}^{n} \setminus S) < n$$

$$\forall (c_{1}, \dots, c_{n}) \in S \qquad (0, 0) \qquad c_{1}$$

$$g = \frac{f^{2}}{((x_{1} - c_{1})^{2} + \dots + (x_{n} - c_{n})^{2} + 1)^{\deg(f) + 1}}$$

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 $\exists$  semialgebraic set  $S \subset \mathbb{R}^n$ 

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$



$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

$$\forall f \in \mathbb{Z}[x_1,\ldots,x_n]$$

 $\exists$  semialgebraic set  $S \subset \mathbb{R}^n$ 

$$\dim (\mathbb{R}^n \setminus S) < n$$

$$\forall (c_1,\ldots,c_n) \in S$$



$$g = \frac{f^2}{((x_1 - c_1)^2 + \dots + (x_n - c_n)^2 + 1)^{\deg(f) + 1}}$$

is a routing function

**Proof Idea:** Sard's Theorem and Constant Rank Theorem

# 3. Length Bound: Problem

# 3. Length Bound: Problem



# 3. Length Bound: Problem



## 3. Length Bound: Problem



Length of connectivity path ≈ 8.4856

#### 3. Length Bound: Problem



Length of connectivity path ≈ 8.4856

Given 
$$f \in \mathbb{Z}[x_1, \dots, x_n]$$
  $d = \deg(f) \ge 2$   
 $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$   $n \ge 2$   
 $(c_1, \dots, c_n) \in \mathbb{Z}^n$   
such that
$$g = \frac{f^2}{((x_1 - c_1) + \dots + (x_n - c_n)^2 + 1)^{d+1}}$$

is a routing function

#### 3. Length Bound: Problem



Length of connectivity path ≈ 8.4856

Given 
$$f \in \mathbb{Z}[x_1, \dots, x_n]$$
  $d = \deg(f) \ge 2$   
 $p, q \in \mathbb{Q}^n \cap \{f \ne 0\}$   $n \ge 2$   
 $(c_1, \dots, c_n) \in \mathbb{Z}^n$ 

such that

$$g = \frac{f^2}{((x_1 - c_1) + \dots + (x_n - c_n)^2 + 1)^{d+1}}$$

is a routing function

**Find** *A* such that

Length 
$$\leq A(n, d, H, c_1, \dots, c_n, p, q)$$
  
 $H = \max |\text{coefficients of } f|$ 

p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by  $4nr(6d + 4)^{n-1}$ 

p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

1. Radius Bound

- 1. Radius Bound
- 2. Trajectory Bound

- 1. Radius Bound
- 2. Trajectory Bound
- 3. Proof Sketch

Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$   $\varepsilon = \min\{g(p), g(q), M\}$   $M = \min g(r), r$  is a routing point of g

Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$   $\varepsilon = \min\{g(p), g(q), M\}$   $\{g \ge \varepsilon\}$   $M = \min g(r), r \text{ is a routing point of } g$ 

Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$  $\varepsilon = \min\{g(p), g(q), M\}$ 

 $M = \min g(r)$ , r is a routing point of g



Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$  $\varepsilon = \min\{g(p), g(q), M\}$ 

 $M = \min g(r)$ , r is a routing point of g



Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$  $\varepsilon = \min\{g(p), g(q), M\}$ 

 $M = \min g(r)$ , r is a routing point of g



Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$  $\varepsilon = \min\{g(p), g(q), M\}$ 

 $M = \min g(r)$ , r is a routing point of g

Exists ball *B* of radius  $\underline{\ \ }$  containing  $\{g \ge \varepsilon\}$ 



Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$  $\varepsilon = \min\{g(p), g(q), M\}$ 

 $M = \min g(r)$ , r is a routing point of g

Exists ball *B* of radius  $\underline{\ \ }$  containing  $\{g \ge \varepsilon\}$ 



Connectivity path for p, q is contained in  $\{x \in \mathbb{R}^n \mid g(x) \ge \varepsilon\}$  $\varepsilon = \min\{g(p), g(q), M\}$ 

 $M = \min g(r)$ , r is a routing point of  $g \ge \underline{\ }$ ?

Exists ball *B* of radius  $\underline{\ \ }$  containing  $\{g \ge \varepsilon\}$ 



p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

*p* and *q* in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

M bound

p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

#### radius bound

here
$$radius bc$$

$$r = \left[ n \left( 120A_1 A_2 H d \left( c_1^2 + \dots + c_n^2 + 1 \right) \right)^{4n^3 (6d)^{3n}} \right]$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

M bound

p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

radius bound

here radius bo
$$r = n \left( 120A_1 A_2 H d \left( c_1^2 + \dots + c_n^2 + 1 \right) \right)^{4n^3 (6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

M bound

We can contain 
$$\left\{g \geq \frac{A_1}{A_2}\right\}$$
 in a ball of radius  $r$ .

Length of a trajectory of  $\nabla g$  in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Length of a trajectory of  $\nabla g$  in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory<sub>i</sub>  $\in$  connected component i of  $g^{-1}((a,b)) \cap B$  $\sum_{i} \text{Length}(\text{trajectory}_i) \leq 2nr(6d+4)^{n-1}$ 

Length of a trajectory of  $\nabla g$  in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory<sub>i</sub>  $\in$  connected component i of  $g^{-1}((a,b)) \cap B$   $\sum_{i} \text{Length}(\text{trajectory}_i) \leq 2nr(6d+4)^{n-1}$ 



Length of a trajectory of  $\nabla g$  in a ball B of radius r is bounded by

$$2nr(6d+4)^{n-1}$$

Let trajectory<sub>i</sub>  $\in$  connected component i of  $g^{-1}((a,b)) \cap B$   $\sum_{i} \text{Length}(\text{trajectory}_i) \leq 2nr(6d+4)^{n-1}$ 



**Proof Idea** 

#### **Proof Idea**

$$\Omega: C^1$$
 curve  $\forall x \in \Omega$  
$$\forall y \in g^{-1}(g(x)) \quad \|\nabla g(x)\| \le \|\nabla g(y)\|$$

#### **Proof Idea**

steep -

shallow **←** ► steep

#### **Proof Idea**

shallow **←** ► steep

Length(trajectory)  $\leq$  Length( $\Omega$ )

steep <

#### **Proof Idea**

$$\Omega: C^{1} \text{ curve } \\ \forall x \in \Omega \\ \forall y \in g^{-1}(g(x)) \quad \|\nabla g(x)\| \leq \|\nabla g(y)\| \\ \Omega = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a loc. min. at } x \text{ on } g(x) = \text{ constant} \right\}$$

Length(trajectory)  $\leq$  Length( $\Omega$ )

#### **Proof Idea**

$$\Omega: C^{1} \text{ curve } \\ \forall x \in \Omega \\ \forall y \in g^{-1}(g(x)) \quad \|\nabla g(x)\| \leq \|\nabla g(y)\| \\ \Omega = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a loc. min. at } x \text{ on } g(x) = \text{ constant} \right\} \\ \subseteq \\ \Theta = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a crit. pt. at } x \text{ on } g(x) = \text{ constant} \right\}$$

Length(trajectory)  $\leq$  Length( $\Omega$ )

#### **Proof Idea**

$$\Omega: C^{1} \text{ curve } \\ \forall x \in \Omega \\ \forall y \in g^{-1}(g(x)) \quad \|\nabla g(x)\| \leq \|\nabla g(y)\| \\ \Omega = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a loc. min. at } x \text{ on } g(x) = \text{ constant} \right\} \\ \subseteq \\ \Theta = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a crit. pt. at } x \text{ on } g(x) = \text{ constant} \right\} \\ = \left\{ x \mid \exists \lambda \in \mathbb{R}, (\text{Hess } g)(x) \cdot \nabla g(x) = \lambda \nabla g(x) \right\}$$

Length(trajectory)  $\leq$  Length( $\Omega$ )

# 3. Length Bound: Trajectory Bound

#### **Proof Idea**

$$\Omega: C^{1} \text{ curve } \\ \forall x \in \Omega \\ \forall y \in g^{-1}(g(x)) \quad \|\nabla g(x)\| \leq \|\nabla g(y)\| \\ \Omega = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a loc. min. at } x \text{ on } g(x) = \text{ constant} \right\} \\ \subseteq \\ \Theta = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a crit. pt. at } x \text{ on } g(x) = \text{ constant} \right\} \\ = \left\{ x \mid \exists \lambda \in \mathbb{R}, (\text{Hess } g)(x) \cdot \nabla g(x) = \lambda \nabla g(x) \right\}$$

Length(trajectory)  $\leq$  Length( $\Omega$ )  $\leq$  Length( $\Theta$ )

# 3. Length Bound: Trajectory Bound

#### **Proof Idea**

$$\Omega: C^{1} \text{ curve } \\ \forall x \in \Omega \\ \forall y \in g^{-1}(g(x)) \quad \|\nabla g(x)\| \leq \|\nabla g(y)\| \\ \Omega = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a loc. min. at } x \text{ on } g(x) = \text{ constant} \right\} \\ \subseteq \\ \Theta = \left\{ x \mid \|\nabla g(x)\|^{2} \text{ has a crit. pt. at } x \text{ on } g(x) = \text{ constant} \right\} \\ = \left\{ x \mid \exists \lambda \in \mathbb{R}, (\text{Hess } g)(x) \cdot \nabla g(x) = \lambda \nabla g(x) \right\}$$

Length(trajectory)  $\leq$  Length( $\Omega$ )  $\leq$  Length( $\Theta$ )  $\leq$  2 $nr(6d + 4)^{n-1}$ 

p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$

p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

where

$$r = n \left(120A_1A_2Hd\left(c_1^2 + \dots + c_n^2 + 1\right)\right)^{4n^3(6d)^{3n}}$$

$$\frac{A_1}{A_2} = \min \left\{ g(p), g(q), \frac{1}{\left(2dH\left(c_1^2 + \dots + c_n^2 + 2\right)\right)^{104n^3(5d)^{5n}}} \right\}$$



p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by  $4nr(6d + 4)^{n-1}$ 



p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

x and y in a same component of  $\left\{g \geq \frac{A_1}{A_2}\right\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$



p and q in a same component of  $\{f \neq 0\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$

x and y in a same component of  $\left\{g \geq \frac{A_1}{A_2}\right\}$  can be connected by a connectivity path of length bounded by

$$4nr(6d+4)^{n-1}$$



x and y in a same component of  $\left\{g \geq \frac{A_1}{A_2}\right\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



Total Length 
$$\leq Length \leq 2 \cdot 2nr(6d + 4)^{n-1}$$

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



Total Length 
$$\leq$$
 Length  $\leq$   $2 \cdot 2nr(6d + 4)^{n-1} = 4nr(6d + 4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

$$\{g \ge b\} = \{g \ge a\}$$



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

$$\{g \ge b\} = \{g \ge a\}$$



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 

Case 2: k > 1 routing points in component



Total Length → + Length

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



Total Length 
$$\leq$$
 Length  $\leq$  2.2 $nr(6d + 4)^{n-1}$ 

x and y in a same component of  $\{g \ge a\}$  can be connected by a connectivity path of length bounded by  $4nr(6d+4)^{n-1}$ 



Total Length 
$$\leq$$
 Length  $\leq$  2·2 $nr(6d + 4)^{n-1} = 4nr(6d + 4)^{n-1}$ 

• Rigorously tracing steepest ascent paths

• Rigorously tracing steepest ascent paths



• Rigorously tracing steepest ascent paths



Rigorously tracing steepest ascent paths



Improve bounds

Rigorously tracing steepest ascent paths



- Improve bounds
- Complexity analysis