
T SIAM 100.0000000-D
C: A S  H

A N
C U I
A M

I S T

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Arts in the

Department of Mathematics at The College of Wooster

by
James Rohal

The College of Wooster
2007

Advised by:

Charles Hampton

A

This Independent Study concerns itself with computational mathematics with an

emphasis on three specific problems posed during the SIAM 100-Dollar, 100-Digit

Challenge [18]. The difficulty of the challenge is solving the problems with

enough precision to get answers accurate to 10 digits. Most solutions put forth by

contestants offered no proof of correctness for their answers. By using theory from

the field of interval analysis, it will be possible to develop algorithms that will

provide a solution within a desired accuracy and that is verifiably correct. To do

so, I will be implementing these algorithms in Mathematica and using interval

analysis to create computer-assisted proofs for the solutions.

iii

A

First, I would like to thank Dr. Charles Hampton for getting me interested in the

field of computational mathematics, a field I hope to pursue in the future.

To my friends, thank you for the encouragement and hospitality you provided

during this process. Both my friends at home and my friends at school have

provided support and acted as stress relievers.

Finally, I wish to express my love and gratitude to all my family. I would

particularly like to thank my parents Jim and Rose for providing support for me

through the difficulties of my senior year. The amount of confidence they have in

my abilities pushed me to succeed and complete my thesis.

iv

C

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Algorithms ix

CHAPTER PAGE

1 Introduction 1
1.1 What is Numerical Analysis? . 2
1.2 The 100-Dollar 100-Digit Challenge 6

2 Interval Analysis 9
2.1 A Little Background . 9
2.2 Interval Numbers . 12
2.3 Interval Arithmetic: Notations & Relations 14
2.4 Rounded-Interval Arithmetic . 16
2.5 Functions of Intervals . 18
2.6 Importance . 20

3 One Photon, Infinite Mirrors 21
3.1 Estimating the Photon’s Path . 22
3.2 Reliable Reflections . 29

4 Hidden Complexity 37
4.1 Survival of the Fittest . 41
4.2 Interval Arithmetic . 45

4.2.1 Search & Destroy . 46
4.2.2 Newton & Krawczyk . 51

5 A Daunting Matrix 62
5.1 A First Look . 63
5.2 Quadratic Forms . 66
5.3 Steepest Descent . 70
5.4 The Method of Conjugate Directions 73

v

5.4.1 Conjugacy . 74
5.4.2 Generating the Search Directions 77

5.5 The Method of Conjugate Gradients 79
5.5.1 Stopping Criteria . 84

5.6 Preconditioned Conjugate Gradient 87
5.7 Interval Arithmetic . 93

6 Conclusion 95

APPENDIX PAGE

A Chapter 3 Code 97

B Chapter 4 Code 117

C Chapter 5 Code 149

References 181

vi

L  F

Figure Page

3.1 Using a lattice gives an efficient way to organize a search to find the
next mirror the photon’s path will intersect. 23

3.2 If a ray strikes a mirror within a given square it must have length at
least

√
2 − 2/3. 24

3.3 Using software-precision, our algorithm is unable to correctly
determine the final position of the photon. 28

3.4 Results of a fixed-precision approach using precision 5 through 30 [6]. 29
3.5 At time 20, the machine-precision trajectory (solid) is at a very

different point than one following the path (dashed) computed
with enough precision to guarantee correctness [6]. 30

3.6 Timing results for Algorithm 3.1 and 3.2. 35
(a) Time needed by Algorithm 3.1 to get d digits of the answer. 35
(b) Time needed by Algorithm 3.2 to get d digits of the answer. 35

3.7 Using Algorithm 3.2 and intervals with diameter 10−5460 we can
find the true path of the photon for time 2000. 36

4.1 A global view of our function f (x, y). 38
4.2 Two different views of f (x, y). 38

(a) A view of f (x, y) bounded on a fixed domain. 38
(b) A contour plot of f (x, y) with darker areas denoting smaller

values. 38
4.3 The results of Algorithm 4.1. The bound on the absolute error is

10−6 and the computation runs through 20 generations with 50
members each. Points of the same color correspond to the same
generation. The white squares mark the location of the 20 lowest
minima. 44

4.4 The first 12 iterations of Algorithm 4.2. 50

5.1 The sparsity pattern of An. The black represent nonzero entries
while the white represents zero entries. 64

5.2 Two different views of the quadratic form of our sample problem. 67
(a) 3D plot of the quadratic form. 67

vii

(b) Contour plot of the quadratic form. 67
5.3 The gradient field of f ′(x). The arrow indicates a gradient sampled

at a x ∈ R2. It points in the direction of steepest increase of f (x) and
is orthogonal to the contour lines of Figure 5.2. 68

5.4 For our example, the method of Steepest Descent converges to
within a tolerance of 10−6 in 22 iterations. 72

5.5 An illustration of the conjugate Gram-Schmidt process on two
vectors in R2. We start with two linearly independent vectors
u0 and u1. Set d0 = u0. Now the vector u1 is composed of two
components: u∗, which is A-orthogonal to d0, and u+, which is
parallel to d0. To construct d1, we subtract out u+ leaving only the
A-orthogonal portion, so d1 = u∗. 78

5.6 The Conjugate Gradient method 84
5.7 Contours of the quadratic form of our sample problem after

preconditioning. 92
(a) Diagonal preconditioning. 92
(b) Cholesky preconditioning. 92

viii

L  A

Algorithm Page

3.1 Finding the Path of a Reflected Photon 26
3.2 Finding the Path of a Reflected Photon Using Intervals 32

4.1 Genetic Algorithm to Minimize a Function 42
4.2 Using Intervals to Minimize a Function 48

5.1 Method of Conjugate Directions . 79
5.2 Conjugate Gradient Method . 83
5.3 Transformed Preconditioned Conjugate Gradient Method 89
5.4 Untransformed Preconditioned Conjugate Gradient Method . . . 90

ix

CHAPTER 1
I

In the past four years, I have been exposed to many different fields of

mathematics. I originally came to Wooster with the intention of becoming a

psychology major with an additional concentration in mathematics. However

as I began to take more mathematics courses, I became more inclined to the

mathematics major. During this same period, I began to take computer science

courses as well and began to realize the importance of computers to the field of

mathematics. My exposure to computer programming led me to take a numerical

analysis course my sophomore year. The numerical analysis course exposed me to

topics that required both the use of computers and mathematics and became one

of my favorite courses at Wooster. It combined theory and application and

allowed me to learn several techniques for approaching a problem. The course

also exposed me to Mathematica for the first time and I have been an avid user ever

since. Although numerical analysis is a topic that can be taught in either a

mathematics or computer science department, its topics are relevant for all the

physical sciences. Its importance to the scientific world made me want to pursue a

topic in numerical analysis for my Independent Study and possibly continue this

in graduate school.

1

1. Introduction 2

1.1 W  N A?

Although the book [4] has subject matter dealing with numerical linear algebra,

Lloyd Trefethen has an entire discourse on the definition of numerical analysis.

The majority of this section uses new information to summarize his words.

In the field of mathematics, questions like, “What is numerical analysis,” do

not carry much philosophical significance. Most fields of mathematics can be

summarized into several sentences. However, a specific (and correct) definition of

numerical analysis relies on having intimate knowledge of the subject at hand

and its applications to both theoretical and real-world problems. For example,

consider the two following definitions:

Definition 1.1 (American Heritage Dictionary, 2004). Numerical analysis is the

study of approximation techniques for solving mathematical problems, taking into

account the extent of possible errors.

Definition 1.2 (Dictionary.com Unabridged). Numerical analysis is the branch of

mathematics dealing with methods for obtaining approximate numerical solutions

of mathematical problems.

It is interesting to note the similarities between these two definitions.

Combining both (1.1) and (1.2) into a simple statement could yield, “Numerical

analysis is the branch of mathematics dealing with approximating solutions to

mathematical problems.” In a way, this definition sounds unappealing without

some type of context. An extremely uninviting definition could be as follows.

Definition 1.3 ([4]). Numerical analysis is the study of rounding errors.

Although rounding errors are inevitable, they are in no way fundamental to

numerical analysis nor do they provide any significance of the field. Nevertheless,

1. Introduction 3

very few people hold any of these definitions with high regard and would not

give such an unattractive definition to numerical analysis. As with many fields of

mathematics, numerical analysis has its own sets of theorems, lemmas, and

conjectures. A more exact definition could then be developed by studying both the

theory and application of numerical analysis through textbooks. Let us consider

the first few chapters of some books related to the field of numerical analysis:

(Prasad, 2005) 1 – Finite Digit Arithmetic and Errors

(Deuflhard & Hohmann, 2003) 1 – Linear Systems

2 – Error Analysis

(Burden & Faires, 2001) 1.1 – Review of Calculus

1.2 – Roundoff Errors and Computer Arithmetic

(Ralson & Rabinowitz, 2001) 1.1 – What is Numerical Analysis?

1.2 – Sources of Error

1.3 – Error Definitions and Related Matter

1.4 – Roundoff Error

1.5 – Computer Arithmetic

(Higham, 1996) 1 – Principles of Finite Precision Computation

2 – Floating Point Arithmetic

(Hildebrand, 1987) 1.1 – Numerical Analysis

1.2 – Approximation

1.3 – Errors

1.4 – Significant Figures

(Stoer & Bulirsch, 1980) 1.1 – Representation of Numbers

1.2 – Roundoff Errors and Floating-Point Arithmetic

1.3 – Error Propagation

There are several important patterns we can see from these chapter titles.

1. Introduction 4

First, the words “error,” and “arithmetic” are repeated numerous times. Only

in one occurrence do we see the word “approximation,” which is interesting

since (1.1) and (1.2) both give the definition of numerical analysis as a field that

“approximates solutions.” With unattractive definitions like (1.1), (1.2), and (1.3)

and authors of numerical analysis textbooks conveying similar notions, it is

unsurprising to see why scientists in the past tended to hold numerical analysis in

low esteem for many years. Furthermore, inquisitive undergraduate students may

be deterred from studying numerical analysis simply based on the definitions and

introductions to these textbooks. Although these definitions and chapter headings

give a negative first impression to numerical analysis, it is unreasonable to say

that these notions should not be introduced. With the advent of the 21st century,

computers have become increasingly important in mathematics and especially

numerical analysis. With the increasing usage of computers, a discussion of

computer arithmetic and finite precision is required.

Putting the notions of error, arithmetic, and approximation aside, we would

like to formulate a precise definition for numerical analysis. Of course no

definition can be perfect, but the definition that follows is a sharp characterization.

Definition 1.4 ([4]). Numerical analysis is the study of algorithms for the problems

of continuous mathematics.

It is important to notice that numerical analysis is defined in terms of

continuous mathematics. The realm of mathematics can be roughly divided into

two fields: continuous mathematics and discrete mathematics. As an analogy,

consider the differences between an analog and digital watch. As time passes on

an analog watch, the hour, minute, and second hands move smoothly. As the

second hand traverses, the analog watch shows infinitely many times. Continuous

mathematics, similar to the analog watch, is the study of structures that are

1. Introduction 5

“smooth” and are infinite in scope. On the other hand, a digital watch shows a

finite number of times using distinct time steps. Unlike continuous mathematics,

discrete mathematics is the study of structures that are fundamentally discrete;

that is, structures that do not rely on continuity. Discrete problems typically

concern computer scientists. [16]

The pivotal word in (1.4) when compared to the earlier definitions is algorithms.

When I looked at the early chapter titles of our numerical analysis textbooks I did

not see this word mentioned once. Although “algorithms” is not mentioned

specifically in the rest of the chapter headings in the textbooks, the subject matter

is that of the analysis and study of algorithms for various mathematical problems.

Numerical analysts are primarily concerned with devising new, more efficient

algorithms to a certain class of problems.

Let us consider the implications of (1.4). Continuous mathematics is the

study of continuous variables. It is impossible to represent continuous variables

including real and complex variables on a computer. Due to this limitation

rounding errors are introduced. With computer algebra systems such as

Mathematica and Maple, attacking problems with exact arithmetic becomes

possible. However, most numerical analysis problems cannot be solved using exact

arithmetic. “Even if rounding errors vanished, numerical analysis would remain,”

says Trefethen [4]. Although approximating numbers using floating-point

arithmetic is a cumbersome task, it provides benefits to numerical analysts. The

goal of numerical analysis is to find algorithms that converge quickly to a solution.

Rather than worry about symbolic computations, approximation allows for one to

search for unknowns, rather than approximating known values.

In this sense, (1.3) is a corollary of (1.4): numerical analysis must take into

account rounding errors and error associated with convergence of algorithms,

1. Introduction 6

however it is not a subject that places error analysis as its main concern. Of

course (1.4) is not the most precise definition of numerical analysis because other

important matters must be included such as the computer architecture and

the programming language. The stability and efficiency of an algorithm is of

paramount importance as well. Nevertheless, as computers get faster, speed

differences in algorithms become nominal and it would seem that a new definition

of numerical analysis is needed. However, this is not the case since algorithms can

always be designed more efficiently.

1.2 T 100-D 100-D C

The challenge originated in a problem solving course taught by Lloyd N. Trefethen

for incoming D.Phil students in numerical analysis at Oxford University. Each

week a problem was given with no hints and the students had to find as many

digits of the answer as they could. The reason Trefethen made the challenge

public was to allow other mathematicians, especially numerical analysts, to have

fun solving difficult problems. When Trefethen approached SIAM in 2001 with the

the idea of publishing 10 challenging scientific computation problems to the

public, they enjoyed the idea so much that that they launched the contest in the

January/February issue of SIAM News. The full text of Trefethen’s challenge is as

follows [18]:

Each October, a few new graduate students arrive in Oxford to begin

research for a doctorate in numerical analysis. In their first term,

working in pairs, they take an informal course called the “Problem

Solving Squad.” Each week for six weeks, I give them a problem,

stated in a sentence or two, whose answer is a single real number.

1. Introduction 7

Their mission is to compute that number to as many digits of precision

as they can.

Ten of these problems appear below. I would like to offer them as a

challenge to the SIAM community. Can you solve them?

I will give $100 to the individual or team that delivers to me the most

accurate set of numerical answers to these problems before May 20,

2002. With your solutions, send in a few sentences or programs or

plots so I can tell how you got them. Scoring will be simple: You

get a point for each correct digit, up to ten for each problem, so the

maximum score is 100 points.

Fine print? You are free to get ideas and advice from friends and

literature far and wide, but any team that enters the contest should

have no more than half a dozen core members. Contestants must

assure me that they have received no help from students at Oxford or

anyone else who has already seen these problems.

Hint: They’re hard! If anyone gets 50 digits in total, I will be impressed.

The ten magic numbers will be published in the July/August issue of

SIAM News, together with the names of winners and strong runners-up.

—Nick Trefethen, Oxford University.

After four months, the deadline arrived and entries were submitted by 94

teams from 25 countries with a total of 180 contestants. Among all the teams, 20

teams had perfect scores of 100 and 5 additional teams with scores of 99. Among

the software systems that were used besides Mathematica, Maple, and MATLAB

include: C, C++, Fortran, Java, Visual Basic, Turbo-Pascal, GMP, GSL, Octave, and

Pari/GP [6].

1. Introduction 8

A book by Bornemann, Laruie, Wagon, and Waldvogel [6], four individuals

that participated in the challenge, provided the largest source of information used

for this Independent Study. The solutions they present are a synthesis of their own

solutions and those of other participants. Through their writing, I was able to

comprehend the three problems that we will see in Chapters 3, 4, and 5.

In the December 2002 issue of SIAM News Joseph Keller of Stanford University

published an interesting letter which provides motivation for this Independent

Study:

I found it surprising that no proof of the correctness of the answers

was given. Omitting such proofs is the accepted procedure in scientific

computing. However, in a contest for calculating precise digits, one

might have hoped for more.

Proofs of correctness in numerical analysis take on many forms. An interesting

numerical method that provides an algorithm and proof of correctness uses a

branch of mathematics called interval analysis. In the next chapter we will briefly

introduce interval analysis and its importance to numerical analysis. Using this,

we will be able to provide the needed proof of correctness.

CHAPTER 2
I A

In [13], Ramon Moore introduced modern concepts and techniques for

treating intervals of real numbers as a separate system in which to do numerical

computations. This allows programmers to create algorithms to produce sharp

upper and lower bounds to numerical computing problems. Using this method

eliminates the need for a priori or a posteriori error analysis and as a consequence

produces numerical proofs of our solutions. In real world situations, accuracy of

solutions is important and a method to generate valid proofs is needed because

the consequences of errors can be catastrophic. As we will see later, interval

analysis also allows us to solve nonlinear problems that would otherwise be

difficult to solve with other numerical methods.

2.1 A L B

Although the benefits of using interval analysis are enormous, it is seldom used in

practice. There are several reasons for this [10]:

• the slowness of some common commercial interval arithmetic packages,

• the occasional slowness of interval algorithms,

9

2. Interval Analysis 10

• and the unavoidable difficulty of some interval problems.

In the past, interval arithmetic was not well supported in programming

languages or in hardware. For programmers, an interval data type is needed to

represent intervals. For an interval I = [a, b], a data type must not only store both a

and b but I must also be represented as a single entity. With the introduction of

operator overloading and the ability to create user defined types as seen in C++

and Fortran, programming algorithms for interval analysis became easier.

More recently, Sun Microsystems implemented interval arithmetic in its

UltraSPARC III processor [12]. By implementing interval-specific hardware

instructions for the basic arithmetic operations in single, double, and quadruple

precision floating-point, it is possible to eliminate the existing performance deficit

in the time required to compute interval versus floating-point expressions. For

example, the M77 compiler developed at the University of Minnesota allowed

interval arithmetic computations to be roughly five times slower than ordinary

floating-point arithmetic [10].

Popular computer algebra systems such as MATLAB, Maple, and Mathematica

have introduced packages to support interval methods. Specifically, Mathematica

includes an implementation of basic interval arithmetic on real numbers using the

Interval[] command.

When measuring time complexity of algorithms, generally it is described in

floating-point operations per second (FLOPS). People who are unfamiliar with

interval analysis commonly want a basis for comparison and want an estimate of

the FLOPS. The effort of implementing interval-specific operations in software and

hardware pales in comparison to the decades of research spent on implementing

floating-point operations. Therefore, it would be unreasonable to compare the

2. Interval Analysis 11

speed of interval based algorithms to those of floating-point based on how long it

takes to compute a solution within a specified bound.

To eliminate this problem, a benchmarking strategy was formulated by

Gustafson and Walster to eliminate the ambiguity of FLOPS. In [10] their results

are summarized. These give a method to benchmark the performance for any

standard algorithm on any computing system. To illustrate the problem with older

benchmarking strategies, we summarize the ideas following from [10]. First

consider a problem in which the input is a degenerate (zero width) interval (or

intervals) and we wish to perform some sort of sensitivity analysis by bounding

the effect of rounding errors. To do so, one would need to compute the time and

effort it takes to run both the interval and noninterval programs and to measure

the amount of time and effort it takes for the noninterval program to perform

rigorous error analysis. This proposed strategy seems like a good method in

illustrating the differences between interval and noninterval methods and their

efficiency in producing error bounds. However, now consider a problem in which

the input is a nondegenerate interval (or intervals). Using the same programs, the

interval method will find a set of solutions to our problem whereas the noninterval

method may have difficulty, especially if one wanted to do sensitivity analysis.

Depending on the problem, the operation counts in algorithms using interval

arithmetic vary from its noninterval counterpart. For example, to get narrow

bounds on the solution to a system of linear algebraic equations, interval

methods require approximately six times as many operations. On the other hand,

using Newton’s method to bound a polynomial root to a given accuracy using

interval methods uses approximately the same number of FLOPS as the standard

arithmetic approach. There are also situations where interval methods perform

better. When solving for all the roots of a polynomial, Newton’s method gives us a

2. Interval Analysis 12

way to find one root, where there can be as many as n roots. In this case, an

interval method would be faster than the noninterval one because the noninterval

method must use some sort of deflation; that is, if a function f (x) has root r1,

then it is natural to consider the simpler polynomial g(x) = f (x)/(x − r1) and use

Newton’s method on that. Interval methods do not suffer from deflation.

2.2 I N

We delve into the realm of interval analysis by first considering extensions of other

number systems using ordered pairs. For example, the rational numbers can be

expressed as a set of ordered pairs of integers where

Q :=
{
(p, q) : p, q ∈ Z

}
.

Here, the rational number p/q ∈ Q can be denoted as (p, q) using this extension.

Similarly, the complex numbers can expressed as an ordered pair of real numbers

where the real part is the first coordinate and the imaginary part is the second

coordinate. We use this idea to extend a real number to that of an interval number

as follows.

Definition 2.1. An interval number is an ordered pair of real numbers, [a, b] with

a ≤ b. We define the set of real numbers [a, b] to be [a, b] := {x ∈ R : a ≤ x ≤ b}. An

interval of the form [a, a] is a degenerate interval where [a, a] = a.

When dealing with intervals, it is convenient to define some notation to aid in

stating various theorems. Many of these definitions and identities can be found in

[10] or [13]. If x denotes a real quantity, then let the capital variant X denote the

interval quantity. If the real quantity is denoted by a capital letter then we denote

2. Interval Analysis 13

the corresponding interval quantity by attaching a superscript “I.” For example a

real matrix denoted by A has a corresponding matrix AI which has intervals as

entries.

Let I denote the set of closed real intervals and let I ∈ I with I = [a, b]. The

notation II indicates the set of intervals which are contained in I,

II :=
{
[x, y] : a ≤ x ≤ y ≤ b

}
.

In other words, II is the set of “subintervals" of I. An element of I ×I × · · · ×I

is an interval vector. An interval is said to be positive if a > 0 and nonnegative if a ≥ 0.

It is said to be negative if b < 0 and nonpositive if b ≤ 0. Two intervals [a, b] and

[c, d] are equal if and only if a = c and b = d. We define the following operations:

(i) The width of the interval I is

w
(
[a, b]

)
= b − a.

(ii) The magnitude of an interval is

∣∣∣[a, b]
∣∣∣ = max

(
|a|, |b|

)
.

(iii) The midpoint of an interval is

m
(
[a, b]

)
=

a + b
2
.

We define a partial ordering of the elements of I by

[a, b] < [c, d] if and only if b < c.

2. Interval Analysis 14

2.3 I A: N & R

We will begin this section by introducing the arithmetic operations on elements of

I . We first make the assumption that these operations are computed with

infinite-precision. Later we will account for round-off error in these computations,

which is important in our study of high-precision arithmetic.

Given [a, b], [c, d] ∈ I we define arithmetic operations on intervals by

[a, b] ∗ [c, d] = {x ∗ y : a ≤ x ≤ b, c ≤ y ≤ d}where ∗ ∈ {+,−, ·, /}. (2.1)

Our definition of interval arithmetic in (2.1) is set-theoretic and affirms the fact

that the sum, difference, product, or quotient of two intervals is just the set of

sums, differences, products, or quotients of the endpoints of the interval. An

equivalent set of definitions for the interval operations are as follows.

[a, b] + [c, d] = [a + c, b + d],

[a, b] − [c, d] = [a − d, b − c],

[a, b] · [c, d] =
[
min{ac, ad, bc, bd},max{ac, ad, bc, bd}

]
,

[a, b]/[c, d] = [a, b] · [1/d, 1/c] if 0 < [c, d].

(2.2)

If 0 ∈ [c, d], we do not define [a, b]/[c, d].

For a nonnegative integer n we can assign exponents to intervals by defining

In =



[1, 1] if n = 0,

[an, bn] if a ≥ 0 or if n is odd,

[bn, an] if b ≤ 0 and n is even,[
0,max{an, bn

}

]
if a ≤ 0 ≤ b and n > 0 is even.

(2.3)

2. Interval Analysis 15

Using degenerate intervals we can see that these operations are the arithmetic

operations on the real numbers. It follows easily from (2.2) that interval addition

and interval multiplication are both associative and commutative; that is, given

I, J,K ∈ I then

I + (J + K) = (I + J) + K,

I · (J · K) = (I · J) · K,

I + J = J + I,

I · J = J · I.

(2.4)

The real numbers 0 = [0, 0] and 1 = [1, 1] are identities for interval addition and

multiplication. For I ∈ I we have

0 + I = I + 0 = I,

1 · I = I · 1 = I.

We note that the distributive law does not always hold for interval arithmetic. For

example

[1, 2] ·
(
[1, 2] − [1, 2]

)
= [1, 2] · [−1, 1] = [−2, 2],

[1, 2][1, 2] − [1, 2][1, 2] = [1, 4] − [1, 4] = [−3,−3].

Since an interval is also a set of real numbers, we consequently have the following

relation amongst interval addition and multiplication for intervals I, J,K ∈ I :

I · (J + K) ⊂ I · J + I · K. (2.5)

2. Interval Analysis 16

We refer to the property of interval arithmetic in (2.5) as subdistributivity.

2.4 R-I A

Recall that in IEEE-754 arithmetic, the range of numbers is limited by the

maximum word size of the current instruction set. Consequently, not every

real number can be expressed using extended-precision arithmetic on a given

computer. To reconcile this problem for a given interval I = [a, b], we round a

down to the largest machine-representable number that is less than a and round b

up to the smallest machine-representable number that is greater than b. This new

interval [a′, b′] ⊇ [a, b] and describes the process of outward rounding.

Directed rounding is rounding that is specified to be up or down depending on

the situation; that is, rather than rounding to the next machine-representable

number, we may round to a specified number within some bound.

Now consider what happens when we subtract the interval I = [a, b] from itself.

From (2.2) we know

[a, b] − [a, b] = [a − b, b − a] , [a − a, b − b] = [0, 0].

As seen above, you might expect our subtraction operation to yield [0, 0], but it

does not. This is due to the fact that each interval is treated as a different variable.

Thus, I − I is treated as I − J where I and J are numerically equal but independent

from one another. This phenomenon is called dependence and causes widening of

intervals in complicated expressions. For example, consider the expression

[−1, 2]2. Using (2.2)

[−1, 2] · [−1, 2] =
[
min{−2, 1, 4},max{−2, 1, 4}

]
= [−2, 4].

2. Interval Analysis 17

On the other hand, using (2.3) we have

[−1, 2]2 =
[
0,max{1, 4}

]
= [0, 4].

Thus using (2.3) for the n-th power of an interval minimizes dependence and

creates sharper bounds. Another method for creating sharper bounds on intervals

is through cancellation or reduction of the number of occurrences of an interval

variable [13]. For example, we can rewrite the expression I/(I − 2) as

I
I − 2

=
I − 2
I − 2

+
2

I − 2
= 1 +

2
I − 2

.

The resulting expression has fewer occurrences of the variable I and would yield

narrower intervals. In fact, since I appears only once we know that the interval

would be the exact range of values.

We may also make use of subdistributivity (2.5) to reduce interval widths.

For example, when dealing with polynomials the nested form of a polynomial

expression usually provides a sharper bound on the range. Given intervals

I0, I1, . . . , In and an interval quantity X then

(
· · ·

(
(In)X + In−1

)
X + · · · I1

)
X + I0 ⊂ In · X · X · · ·X + · · · + I2 · X · X + I1 · X + I0.

For polynomials there are infinitely many combinations of parentheses and

elements that define the same polynomial. For example

f (X) = X(X − 1) = X2
− X = −6 + (X + 2)

(
5 − (X + 2)

)
= · · ·

2. Interval Analysis 18

Then for a given interval X, using the nested form of f (X) would produce a

narrower interval than f (X) in its expanded form.

2.5 F  I

When dealing with interval numbers, we must describe the functions on which

they act. A superscript “I” on the symbol for a function indicates that it is an

interval function. An interval function is an interval-valued function of one or

more interval arguments. An interval function maps the value of one or more

intervals onto an interval with f I : II → I . Consider a real-valued function f

with variables x1, x2, . . . , xn and its corresponding interval function f I of intervals

X1,X2, . . . ,Xn. The interval function f I is said to be an interval extension of f if

f I(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) for any values of the argument variables; that is,

if each of the arguments of f I are degenerate intervals, then f I(x1, x2, . . . , xn) is a

degenerate interval equal to f (x1, x2, . . . , xn) [10].

In Section 2.4 we mentioned the concept of rounded-interval arithmetic. In

practice, we rarely have the capabilities of performing exact-interval arithmetic.

The definition of interval extension presupposes that we are using exact-interval

arithmetic. Therefore, for an interval function (or interval extension) f I we are

normally able to compute an interval enclosure F with

f I(x1, x2, . . . , xn) ∈ F(x1, x2, . . . , xn).

We say an interval function f I is inclusion monotonic if Xi ⊂ Yi (i = 1, 2, . . . ,n)

implies f I(X1,X2, . . . ,Xn) ⊂ f I(Y1,Y2, . . . ,Yn). It follows from (2.2) that finite

interval arithmetic is inclusion monotonic [13]. Thus for I, J,K ∈ I with I ⊂ K and

2. Interval Analysis 19

J ⊂ L, then

I + J ⊂ K + L

I − J ⊂ K − L

I · J ⊂ K · L

I/J ⊂ K/L if 0 < L.

From this set of relations and the transitivity of inclusion relations we arrive at

the following theorem which will aid in the development of our algorithms later.

Theorem 2.2 ([13, Theorem 3.1]). If F(X1,X2, . . . ,Xn) is a rational expression in the

interval variables X1,X2, . . . ,Xn, i.e., a finite combination of X1,X2, . . . ,Xn and a finite

set of constant intervals with interval arithmetic operations, then

X′1 ⊂ X1, . . . ,X′n ⊂ Xn ⇒ F(X′1, . . . ,X
′

n) ⊂ F(X1, . . . ,Xn)

for every set of interval numbers X1, . . . ,Xn for which the interval arithmetic operations

on F are defined.

If X′1, . . . ,X
′

n are real numbers, then the value of F(X′1, . . . ,X
′

n) will be a real

number contained in its interval counterpart F(X1, . . . ,Xn). Therefore, we are able

to bound the range of values of a real rational function by performing a finite

number of interval arithmetic operations on its corresponding interval function.

As we will see later, an interval enclosure F(X1, . . . ,Xn) will not produce sharp

bounds on the range if a variable Xi appears more than once or appears with a

degree greater than one in F. If each interval variable Xi in F(X1, . . . ,Xn) appears

only once and has a degree of one, then F(X1, . . . ,Xn) will compute the actual

2. Interval Analysis 20

range of values of the function f for each xi ∈ Xi. Thus the interval enclosure F

will be exactly the same as the set of all combinations of real inputs for f ; that is,

F(X1, . . . ,Xn) =
{

f (x1, . . . , xn) : xi ∈ Xi for i = 1, . . . ,n
}
.

2.6 I

Interval methods have many applications to real world problems since they

enable one to find solutions to problems that cannot be solved by noninterval

methods. One example is the global optimization problem. Although interval

algorithms usually run slow, a price is paid to get a reliable algorithm that will not

only guarantee error bounds that a noninterval algorithm will not provide, but in

some cases provide a proof of uniqueness and existence. Interval methods are also

more reliable. For example, the interval Newton method always converges [10].

Another benefit of using interval methods is that stopping criteria can easily be set.

A natural stopping criteria would be to stop the algorithm if the interval bounds

are no longer decreasing or if the interval bounds are within a required tolerance.

To find a stopping criteria for noninterval algorithms is difficult and may be hard

to implement.

CHAPTER 3
O P, IM

Problem. A photon moving at speed 1 in the x-y plane starts at time t = 0 at

(x, y) = (1/2, 1/10) heading due east. Around every integer lattice point (i, j) in the

plane, a circular mirror of radius 1/3 has been erected. How far from (0, 0) is the

photon at t = 10?

At first glance this would seem like a problem destined for physicists rather

than mathematicians. If this problem modeled a real world situation, then we

would have to modify the statement. First, a photon is an elementary particle that

is a fundamental unit of electromagnetic radiation that travels at the speed of light

in empty space [3]. It is a bit out of the ordinary for a photon to be traveling

at speed 1. When dealing with reflections offmirrors, one must worry about

refraction. In a mirror, a layer of glass sits atop a reflective surface. When light

enters the glass it passes from one medium to another and therefore its phase

velocity changes as well as its direction. To maintain high accuracy computations,

the refractive index of the glass and the space the photon travels through must be

considered. Also, the existence of perfectly circular mirrors is absurd.

Putting these considerations aside, assume the magnitude of the photon’s

velocity does not change and that the mirrors offer a perfect reflection; that is, the

21

3. One Photon, Infinite Mirrors 22

angle of incidence equals the angle of reflection. To determine the final position of

the photon, it is necessary to write a program that determines the entire path of the

photon. It is important to notice that using typical machine-precision (16 digits)

will not yield 10 correct digits of our answer [6]. Knowing that machine-precision

is a limiting factor in our program, error will enter our computations quickly

because 1/10 is not finitely representable in binary. This also means that software

or programming languages that use machine-precision by default (such as C) will

not be able to solve this problem without the use of external packages. Fortunately,

Mathematica can switch from machine-precision to arbitrary-precision arithmetic as

necessary. In the following sections, I will be presenting an elegant solution due to

Fred Simons that with the aid of interval arithmetic, will allow us a precise answer.

3.1 E  P’ P

Since we are given the photon’s initial position and its initial velocity and that

t = 10, the problem at hand can be solved by following this pseudoalgorithm:

while 0 < t ≤ 10

Find the next mirror of intersection.

Update the photon’s position.

Update the photon’s velocity

Reduce the travel time of the photon from t .

end while

Using a simple geometric argument we can easily determine (by trial-and-error)

which mirror the photon’s path will intersect. Consider a ray emanating from a

point P in the photon’s path in the direction of the unit vector v. If we were to

divide R2 into unit squares centered on the the lattice points in Z2, then these

3. One Photon, Infinite Mirrors 23

squares will divide our ray into segments as seen in Figure 3.1. It is a triviality to

find the square the ray is in by rounding its coordinates.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

P

Figure 3.1: Using a lattice gives an efficient way to organize a search to find the next
mirror the photon’s path will intersect.

Let us take a look at a ray that lies within one of these unit squares. Clearly, this

ray will not have length longer than
√

2, but what can we say about its minimum

length? For the ray to hit the mirror inside a given square, the shortest length it

can have is if it is tangent to the mirror as seen in Figure 3.2. However, since we

have a unit square we can easily find the length of this tangent ray to be
√

2 − 2/3.

We could use
√

2 − 2/3 in our future program, but it is simpler to give a

rational lower bound. Fred Simons [1] used 2/3 as his bound, however 2/3 is not

finitely representable in binary. As an alternative, we could use a rational number

that is finitely representable in binary, but through experimentation I found that

using such a number does not provide faster computations.

This observation gives us an easy way to determine whether a ray will

intersect a mirror. We begin by assuming that the path from P will intersect

3. One Photon, Infinite Mirrors 24

1�3

�����
2
������������

2
�

1
�����
3

�����
2�

2
�����
3

Figure 3.2: If a ray strikes a mirror within a given square it must have length at least
√

2 − 2/3.

the mirror corresponding to P + (2/3)v. Until we find an intersection, we

can consider as long as necessary the sequence of mirrors corresponding to

P + 2 · (2/3)v,P + 3 · (2/3)v,P + 4 · (2/3)v, . . . As soon as we find an intersection;

that is, if the segment inside the square has length at least 2/3, then we replace P

by the point of intersection and update its velocity appropriately.

Finding the length of the segment inside of an ambient square is computationally

intensive and does not provide an easy way to determine whether the mirror is hit

or not hit. If we let m be the center of the circle corresponding to P, then choose

the smallest positive root t of the quadratic equation

(P + tv −m) · (P + tv −m) = 1/9 (3.1)

to find the time it takes for the photon to reach a mirror of intersection. Intuitively,

since P + tv −m is a vector and the distance from the intersection point Q to the

3. One Photon, Infinite Mirrors 25

center of the mirror is 1/3, we are really solving for |P + tv −m| = 1/3. If the

photon hits the mirror, it will hit once when it enters and once when it leaves,

which explains the quadratic nature. If there is no intersection, then (3.1) will not

have any real roots and thus we know that the mirror corresponding to m will not

get hit. In this case, we increase P by (2/3)v and then try again.

Now assume that s is the smallest positive root of (3.1). We can find the

intersection point Q by just letting Q = P + sv, but now we want to find the

reflected velocity. Assume for a moment that the center of the mirror is the origin

and Q = (a, b). We want to find a linear transformation H that will take our

photon’s velocity and give us its reflected velocity. The transformation matrix H

sends (−a,−b) to (a, b) because it reverses direction, and fixes (−b, a) so the angle of

incidence equal the angle of reflection. Therefore, we are trying to find H such that

H ·

−a −b

−b a

 =
a −b

b a

 .
Using the fact that a2 + b2 = 1/9, we can easily solve for H:

H = 9

b2
− a2

−2ab

−2ab a2
− b2

 .
However, since we assumed that our circle was centered at the origin, we must

have that (a, b) = Q −m.

We will now present Algorithm 3.1 which makes use of the above information

to get at least ten digits of the answer.

Algorithm 3.1 (Finding the Path of a Reflected Photon)

Assumptions: The photon has unit speed and the mirrors have radius 1/3.

3. One Photon, Infinite Mirrors 26

Input: An initial position P, a direction vector v, and a maximum time tmax.

Output: The path of the particle from time 0 to tmax where path is the set of

points of reflection together with the position of P at time 0 and tmax.

Additionally, return the distance of the photon from the origin at time tmax.

Notation: trem is the amount of time remaining, m is the center of the circle in the

square containing the photon, and s is the time the photon strikes the

circle, measured from the time of the preceding reflection. For a point Q,

HQ represents the matrix

HQ = 9

b2
− a2

−2ab

−2ab a2
− b2

 . (3.2)

1 trem = tmax

2 path = {P}

3 while trem > 0

4 / / Assume for this iteration that m is the midpoint of the mirror the photon’s

path intersects with.

5 m = round(P + 2v/3)

6 / / If s , ∞ then s is equal to the time it takes for the photon to reach the

intersection point with the mirror, otherwise the photon does not intersect

the mirror.

7 s = smallest positive root of (P + tv −m) · (P + tv −m) = 1/9

8 i f s < trem

9 / / In this case, the photon intersects a mirror so P is now set to be the point at

which it intersects with the mirror.

10 P = P + sv

11 v = HP−mv

3. One Photon, Infinite Mirrors 27

12 e lse

13 / / The photon does not intersect the mirror centered at m because either (1)

time has run out and the photon stops in mid-flight or (2) an incorrect

mirror was chosen.

14 s = min(trem, 2/3)

15 / / If (1) then P is the point at time 10. If (2) then P is the point that lies in the

unit square surrounding the next mirror in its path.

16 P = P + sv

17 end i f

18 end while

19 / / Update time and path

20 trem = trem − s

21 Append P to path

22 return path and the distance of the photon from the origin

Appendix A contains code for Algorithm 3.1. In Mathematica, we may force

the use of software-arithmetic (high-precision arithmetic) by invoking the N

command on our initial inputs. By definition, N[expr, n] attempts to give a

result with n-digit precision. For our case, if we let P = N[{1/2,1/10},36], then

Mathematica will attempt to use 36 digits of precision using the technique of

significance arithmetic. Significance arithmetic not only keeps track of numerical

results, but also uses error propagation to track their accuracy. In this way,

numerical computations can return in the end a numerical quantity together with

its estimated (or worst-case) uncertainty by using calculus-based heuristics. Using

44-digit precision for the initial conditions, the result is believed to have 11.336

correct digits:

0.9952629194433541602206361265 ‘11.336

3. One Photon, Infinite Mirrors 28

It seems that by initially using 35-digit values we can get at least 10 digits of our

answer but Mathematica believes only 4.789 digits are correct. By increasing the

software-precision, we can easily get higher precision answers. However, this is a

dangerous route, especially since we have no way of verifying that our answer is

correct.

Unlike other software packages, Mathematica’s approach to high-precision

arithmetic does not allow one to use fixed-precision for numerical computations.

Although this implementation is good because it gives an error estimate using

significance arithmetic, we may use fixed-precision to better understand error

propagation. Using Mathematica’s software-precision, we can see problems using

too low of a precision as in Figure 3.3.

-0.5 0

-0.5

0

-0.5 0

-0.5

0

Figure 3.3: Using software-precision, our algorithm is unable to correctly determine the
final position of the photon.

Using fixed-precision we are able to determine the actual number of correct

digits our algorithm will give us as seen in Figure 3.4. It is safe to conclude that

the 10 digits of the correct distance at time t = 10 are 0.9952629194. From Figure

3.4 we can estimate that using a precision d we can get about d − 11 correct digits.

Because our photon reflects 17 times in our stated problem, the precision loss

3. One Photon, Infinite Mirrors 29

is about two-thirds of a digit per reflection [6]. Using fixed-precision, we are

also able to compare trajectories. Figure 3.5 illustrates that at time 20, using

machine-precision may not give an accurate trajectory.

Precision Computed Distance Number of Correct Digits

5 3.5923 0

6 0.86569 0

7 2.386914 0

8 0.7815589 0

9 1.74705711 0

10 0.584314018 0

11 0.8272280639 0

12 1.01093541331 0

13 0.993717133054 2

14 0.9952212862076 4

15 0.99525662897655 4

16 0.995262591079377 6

17 0.9952631169165511 5

18 0.99526292565663264 7

19 0.995262918048682059 8

20 0.9952629191087191889 9

21 0.99526291946156616033 10

22 0.995262919441599585251 11

23 0.9952629194435253187805 12

24 0.99526291944336978995292 13

25 0.995262919443353261823951 14

26 0.9952629194433543857853841 15

27 0.99526291944335415781402273 16

28 0.995262919443354160804882481 19

29 0.9952629194433541607720201289 18

30 0.99526291944335416087109016456 19

Figure 3.4: Results of a fixed-precision approach using precision 5 through 30 [6].

3.2 R R

Although the answer we obtained in Section 3.1 seems correct, we have no way of

verifying our solution and must rely on Mathematica’s significance arithmetic to

determine our precision. To create an algorithm that has a proof of correctness

3. One Photon, Infinite Mirrors 30

Figure 3.5: At time 20, the machine-precision trajectory (solid) is at a very different point
than one following the path (dashed) computed with enough precision to guarantee
correctness [6].

we will use interval arithmetic. The interval algorithm we will present is a

naive approach because we are simply transforming Algorithm 3.1 by putting a

small interval around each of our inputs and replacing each operation by its

corresponding interval version. This will give us an interval enclosure of the

photon’s position at time 10. If the interval is not small enough or we do not have

the required precision, then just restart the algorithm and reduce the interval

enclosure by a factor of 10 about our initial conditions. Since we are no longer

using real arithmetic, we need to consider the following:

(i) Because we are using small interval enclosures, we need to have a high

enough working precision to handle the precision required for our intervals.

Experimentally, we find that using s+ 2 digits of working precision when the

3. One Photon, Infinite Mirrors 31

initial conditions have radius 10−s appears to be adequate [6]. In Mathematica,

the working precision can be set by using N[expr,s + 2] to give expr a

working precision of s + 2. This also brings up another subtlety: if any of the

intermediate results have a precision less than the desired precision, then we

must start with a smaller enclosing interval. We must check whether the

precision lost when solving the quadratic equation does not build up too

much, which can be done by checking the precision of the results using

Precision.

(ii) When solving the quadratic equation in interval form, one must check that the

solution has no expression of the form
√

[negative value,positive value]. If

this happens, then the resulting solution would not be uniquely determined

by the input interval. Therefore, just exit the loop and decrease the size of

the initial intervals by a factor of 10.

(iii) When we check to see whether there is time remaining for the photon to

strike another mirror, we need to check that the travel time along the current

ray is strictly less than the time remaining. Doing so precludes the situation

where the travel time overlaps the interval representing the time remaining.

(iv) Since we are using intervals, the photon may end up at time 10 + δ rather

than at time 10. However, since the photon travels at unit speed, we may

turn this time uncertainty into space uncertainty and thus get an interval

containing the answer [6].

We will now present an algorithm that uses similar techniques as Algorithm

3.1 and takes into account the comments listed above.

Algorithm 3.2 (Finding the Path of a Reflected Photon Using Intervals)

3. One Photon, Infinite Mirrors 32

Assumptions: The photon has unit speed and the mirrors have radius 1/3. An

interval arithmetic package is available and has implemented

round(interval).

Input: An initial position p, a direction vector v, a maximum time tmax, and an

absolute error bound ε on the final position.

Output: The path of the particle from time 0 to tmax where path is the set of points

of reflection together with the position of p at time 0 and tmax. Additionally,

return the distance of the photon from the origin at time tmax. The position

of the last point is guaranteed to have absolute error less than ε.

Notation: We have lower-case letters denote real numbers, upper-case letters

denote intervals, and script letters for sets of intervals. For an interval Q,

HQ is the same as (3.2). The intervals P,V,M,Trem represent the position,

direction, mirror-center, and time remaining, respectively. We let s be the

value for the radius of interval precision.

Functions: For an interval X = [a, b], min(X) and max(X) represents min(a, b) and

max(a, b), respectively, diam(X) = max(X) −min(X), and mid(X) =(
min(X) +max(X)

)
/2. For a set of intervals X = {Xi}, then min(X) =[

mini

(
min(Xi)

)
,mini

(
max(Xi)

)]
and diam(X) = maxi

(
diam(Xi)

)
. For

a (interval) vector w, wx and wy represent the x and y components,

respectively.

1 Trem = [tmax, tmax]

2 path = {p}

3 s = b− log10 εc

4 error = ∞

5 δ = 10−s

6 wp = s + 2

3. One Photon, Infinite Mirrors 33

7 while error > ε

8 Set the working precision to wp digits.

9 while min(Trem) > 0

10 / / Create small intervals around p and v.

11 P =
(
[px − δ, px + δ, py − δ, py + δ]

)
12 V =

(
[vx − δ, vx + δ, vy − δ, vy + δ]

)
13 M = round(P + 2V/3)

14 Use interval arithmetic to determine S, the set of interval solutions to the

quadratic equation (P + tV −M) · (P + tV −M) = 1/9

15 i f S contains an expression of the form
√

[a, b] with a < 0 < b

16 exit inner while loop

17 end i f

18 Let T be those solutions of the form [a, b] with a ≥ 0

19 / / T = [∞,∞] if T = ∅

20 T = min(T)

21 i f T ≤ Trem

22 / / The photon intersects the mirror.

23 P = P + TV

24 V = HP−MV

25 Trem = Trem − T

26 e lse i f T > Trem and Trem ≥ 2/3

27 / / The photon does not intersect the mirror in question.

28 Trem = Trem − 2/3

29 P = P + 2/3V

30 e lse i f T > Trem and Trem < 2/3

31 / / Time has run out and the photon stops moving.

32 P = P + TremV

33 Trem = 0

3. One Photon, Infinite Mirrors 34

34 e lse

35 The intervals are not comparable so exit the inner while loop

36 end i f

37 Append mid(P) to path

38 i f the precision of any of T,P,V,Trem is less than − log10 ε

39 exit inner while loop

40 end i f

41 end while

42 error = diam
({

Px + [−max(|Trem|),max(|Trem|)],Py + [−max(|Trem|),max(|Trem|)]
})

43 s = s + 1

44 δ = 10−s

45 wp = s + 2

46 end while

47 return path and the distance of the photon from the origin

Appendix A contains code for Algorithm 3.2. When we run the algorithm for

the first time, we do not know what initial value for s we should use to guarantee

a certain accuracy goal. Steps 43 - 45 of Algorithm 3.2 are included so if we have

not reached our accuracy goal, then our working precision is increased by a factor

of 10. We find that for s = 40 we can achieve 10−12 accuracy. In the future, we may

choose a value of s > 40 so the algorithm will not have to decrease the size of the

intervals and thus decrease running time. Through experimentation, we can find

that an interval radius of 10−d+28 for the initial conditions is sufficient to get d

digits of the answer [6].

Some additional investigations of this problem would be to consider what

happens when the radius of the mirrors is changed and remains constant or if each

mirror is given a random radius. It may also be interesting to create an algorithm

3. One Photon, Infinite Mirrors 35

to model the reflections of a photon with non-unit speed. In this case, we would

have difficulties in determining the photon’s final position using space uncertainty.

As stated at the beginning of this chapter, knowing the photon’s position to such

tolerances is absurd and impossible unless given such a simple problem statement.

We have shown that both Algorithm 3.1 and Algorithm 3.2 can both be used

to solve the given problem. Using Algorithm 3.2 we are able to eliminate the

uncertainty of heuristic error estimates. However, it is strange that the interval

algorithm has a faster run time than its noninterval counterpart which can be seen

in Figure 3.6. Unfortunately I was unable to duplicate the timing results shown in

[6]. This may be due to the fact that the computer I used had a slower processor

and less memory available.

10000 20000 30000

5

15

25

35

45

55

65

75

85

95

105

CPU time �sec�

Digits

(a) Time needed by Algorithm 3.1 to get d
digits of the answer.

10000 20000 30000

5

10

15

20

25

30

35

40

CPU time �sec�

Digits

(b) Time needed by Algorithm 3.2 to get d
digits of the answer.

Figure 3.6: Timing results for Algorithm 3.1 and 3.2.

The problem becomes more difficult as the travel times increase. By using

Algorithm 3.2 it is possible to find the position of the photon at any specified time.

At time 100, starting with a radius of 10−265 we are able to get an answer correct to

13 digits. However, for time 2000, a radius of 10−5460 is required to get a true

ending position for the photon [6]. The trajectory shown for time 2000 is shown in

Figure 3.7 and has some interesting characteristics. You would believe that the

3. One Photon, Infinite Mirrors 36

photon would exhibit a random walk governed by brownian motion, however

due to the fixed positions and radii of the mirrors, the photon takes long steps in

both the horizontal and vertical directions. This follows from the fact that the

photon cannot travel for a long distance without hitting a mirror unless it travels

in a purely horizontal or vertical direction.

0 20 40 60

0

20

40

Figure 3.7: Using Algorithm 3.2 and intervals with diameter 10−5460 we can find the true
path of the photon for time 2000.

CHAPTER 4
H C

Problem. What is the global minimum of the function

esin(50x) + sin (60ey) + sin(70 sin x) + sin
(
sin(80y)

)
− sin

(
10(x + y)

)
+

x2 + y2

4
?

We first let f (x, y) denote the given function in our problem statement. If we

take a look at a global plot of f (x, y) as in Figure 4.1 we can see it resembles

a paraboloid of one sheet. Since sine is bounded on [−1, 1], we have that the

first five summands lie in the intervals [1/e, e], [−1, 1], [−1, 1], [− sin 1, sin 1], and

[−1, 1], respectively. However, the (x2 + y2)/4 is unbounded as x and y approach

infinity so it dominates the other summands and the result is a quadratic surface

which is centered around the origin.

Using this knowledge we may take the largest enclosing region amongst all the

other summands and believe that our global minimum lies within the square

[−1, 1] × [−1, 1]. Although finding the minimum of a paraboloid is an easy task,

we can see that the trigonometric elements introduce added complexity as seen in

Figure 4.2.

37

4. Hidden Complexity 38

-20

0

20
-20

0

20

0
100
200
300
400

-20

0

20

Figure 4.1: A global view of our function f (x, y).

-1
-0.5

0

0.5

1-1

-0.5

0

0.5

1

-2.5
0

2.5
5

1
-0.5

0

0.5

(a) A view of f (x, y) bounded on a fixed
domain.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(b) A contour plot of f (x, y) with darker
areas denoting smaller values.

Figure 4.2: Two different views of f (x, y).

If this problem were given to a typical calculus student, the first thing he or she

would do is take the partial derivatives of f with respect to x and y and then solve

the system { fx = 0, fy = 0}. This naive approach would not work quite well since

solving this system actually yields 2720 different solutions [6]. It is possible (but

difficult) to find all the solutions and determine which critical points are minima,

4. Hidden Complexity 39

maxima, and saddle points using contour data. However this is not the approach

we will be taking. To solve such a problem we must split our task into several

steps:

(1) We must first find a bounded region that contains the minimum. We already

believe that the minimum lies within the square [−1, 1] × [−1, 1] but we

would rather have a smaller enclosing interval to guarantee higher accuracy.

(2) The next step requires that we identify a rough location of the lowest point

in that region.

(3) By finding a rough location of the minimum, we may use a method with the

rough estimate as input to zoom in closer and pinpoint the minimum to

high precision.

In Mathematica we can easily complete the first two steps by using Min and Table.

A Mathematica Session

For convenience, we define f in Mathematica to take two real-valued arguments

or one List argument. By defining f in this way, we are able to make use of

Mathematica’s advanced arbitrary-precision routines. However, we also can use

Compile to create highly optimized byte-code when we define f. The benefits to

using optimized code is that, like C or Fortran, we can specify up front what type

of variable each input will be. By doing this, Mathematica will generate efficient

internal code to make numerical expressions evaluate faster. In our case we will

be using Real inputs to do our initial investigations. There is also a disadvantage

to using a technique like this. The types that the Compile command handles

correspond to the types that computers can handle at the machine-code level.

Therefore, for real numbers we can only work with machine-precision, and not

4. Hidden Complexity 40

arbitrary-precision. The other disadvantage is that Compile does not support

Interval inputs.

f�x_, y_� :� �Sin�50 x� � Sin�60 �y� � Sin�70 Sin�x�� � Sin�Sin�80 y�� � Sin�10��x � y�� �
x2 � y2
�����������������

4
;

fc � Compile��x, y�,

�Sin�50 x� � Sin�60 �y� � Sin�70 Sin�x�� � Sin�Sin�80 y�� � Sin�10��x � y�� �
x2 � y2
�����������������

4
	;

f��x_, y_�� :� f�x, y�;
fcl � Compile���x, _Real, 1��, �Sin�50 x
1�� � Sin�60 �x
2�� �

Sin�70 Sin�x
1��� � Sin�Sin�80 x
2��� � Sin�10��x
1� � x
2��� �
x
1�2 � x
2�2

����������������������������������
4

	;

Since we believe that the minimum lies within the square [−1, 1] × [−1, 1], we may

consider a grid of points with boxes of size 0.01 × 0.01. We are able to find the

f -values of all of these points and take the minimum and return its position.

grid � Flatten�Table��x, y�, �x, �1, 1, 0.01�, �y, �1, 1, 0.01��, 1�;

fgrid � fcl �� grid;

�Min�fgrid�, Flatten�Extract�grid, Position�fgrid, Min�fgrid���, 1��

��3.24646, ��0.02, 0.21��

Similarly, we can use a finer grid of points with boxes of size 0.001 × 0.001 to get

an even better approximation.

grid � Flatten�Table��x, y�, �x, �1, 1, 0.001�, �y, �1, 1, 0.001��, 1�;

fgrid � fcl �� grid;

�Min�fgrid�, Flatten�Extract�grid, Position�fgrid, Min�fgrid���, 1��

��3.30563, ��0.024, 0.211��

Due to memory limitations, using a grid finer than 0.001 × 0.001 becomes

difficult and forces us to use different methods to find the global minimum.

Although using the grid approach gave an approximate location of the minimum,

there is no guarantee that this is the true value. Rather, it serves as a guide and

gives an upper bound to the f -value of the global minimum.

4. Hidden Complexity 41

Knowing this bound, we can determine that the global minimum lies

somewhere within the unit circle centered at the origin. Consider the set of points

that lie outside the unit circle centered at the origin: the exponential term is at

least 1/e, the quadratic terms are at least 1/4, and the sin terms contribute at

least −1,−1,− sin 1, and −1, respectively for an approximate total of −3.223. The

difficulty now lies in determining a smaller region that contains the correct

point and whether that region is small enough so it does not contain any other

minimums.

The point (−0.024, 0.211) serves as guide and not as an answer. Although this

point was found through a grid search, it is not the approach we will be pursuing.

Several teams in the SIAM challenge used a finer grid to search, together with

estimates based on the partial derivatives of f to guarantee that the point found is

actually the true minimum [6].

4.1 S   F

By using a grid search we were able to get a good approximation of the minimum,

however it is easy to devise a routine that uses genetic algorithms to introduce

randomness into the process of finding the solution to our problem. Genetic

algorithms are inspired by biological evolution such as natural selection and

survival of the fittest. A basic genetic algorithm consists of several steps. First, the

evolution starts from a population of randomly generated individuals. Then at

each generation, the fitness of each individual in the population is evaluated by a

fitness function. If a fitness function yields a positive result, then the individual

becomes eligible to survive for the next generation. For those that are not eligible,

4. Hidden Complexity 42

they die off and do not survive for the next generation. The new population is

then used in the next iteration of the algorithm [2].

We can relate this general definition to our problem as follows. Rather than

individuals, we begin by using points that lie within [−1, 1] × [−1, 1]. The points

that survive at each generation will be called parents. We are able to utilize the

upper bound to the global minimum in our fitness function. Our fitness function

will evaluate each point (x, y) using f and if f (x, y) is less than the current upper

bound, then it has a possibility of surviving for the next generation. For each point

in the current generation, n new random points are introduced, which we will call

children. We then evaluate the group of children and parents using the fitness

function and take the n best results. This group of n points becomes the parents

for the next generation. After each generation, the domain in which the points are

randomly chosen from shrinks.

Algorithm 4.1 (Genetic Algorithm to Minimize a Function)

Input: The objective function f (x, y), the search rectangle R, the number of children

generated at each generation and the number of total parents n, a bound ε

on the absolute error in the location of the minimum of f in R, and a scaling

factor s for shrinking the search domain at each generation.

Output: An upper bound to the minimum of f in R and an approximation to its

location.

Notation: parents is the current generation of sample points, fvals is the set of

f -values for the current generation, and newfvals is the set of f -values of

the children formed during the generation.

1 z = center of R

2 parents = {z}

4. Hidden Complexity 43

3 fvals =
{

f (z)
}

4 {h1, h2} = side-lengths of R

5 while min(h1, h2) > ε

6 For each p ∈ parents, let its children consists of n random points in a rectangle

around p. We can get these points by randomly choosing x and y from

[−h1, h1] and [−h2, h2], respectively.

7 newfvals = f -values on the set of all children.

8 Take the n lowest values from fvals ∪ newfvals and use this to determine the

points from the children and previous parents that will survive.

9 Let parents be this set of n points and let fvals be the corresponding f -values.

10 Shrink our search domain by letting hi = s · hi for i = 1, 2.

11 end while

12 return the smallest value in fvals and the corresponding value from parents .

In problems with sufficient complexity, genetic algorithms like Algorithm 4.1

may have a tendency to converge toward local minima rather than the global

minimum of the problem. The likelihood of this occurring depends on the

shape of the function [2]. For the problem at hand, this is extremely likely to

occur due to the complexity near the origin. This problem may be alleviated by

increasing the number of points n introduced at each generation or by increasing

the maximum number of generations.

A Mathematica Session

With a little experimentation, we can find that a value for n as low as 30 will get

correct digits for our answer. However, to increase our confidence we can increase

n to whatever value we desire. When n = 70, Algorithm 4.1 solves the problem

with high probability (992 successes in 1000 runs). Using functional programming,

we are able to program our genetic algorithm in a few lines of code [6]:

4. Hidden Complexity 44

h � 1; gen � �f�#�, #� & �� ��0, 0��;

While�h � 10�6,

new � Flatten�Table�#�2� � Table�h�	2 Random�� � 1
, �2��, �50�� & �� gen, 1�;

gen � Take�Sort�Join�gen, �f�#�, #� & �� new��, 50�;

h � h�2�;

gen�1�

��3.3068686474668394,��0.02440311773697685,0.21061239883434543��

Using Mathematica, I developed the code in Appendix B to generate Figure 4.3

which illustrates how Algorithm 4.1 finds the true global minimum.

-0.75-0.5-0.25 0 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Figure 4.3: The results of Algorithm 4.1. The bound on the absolute error is 10−6 and the
computation runs through 20 generations with 50 members each. Points of the same color
correspond to the same generation. The white squares mark the location of the 20 lowest
minima.

If one wanted to use a canned genetic algorithm, the NMinimize function

minimizes a function f of any number of variables using several different

4. Hidden Complexity 45

methods. It seems that both the genetic algorithms DifferentialEvolution and

RandomSearchwork quite well given enough starting points.

A Mathematica Session

NMinimize��f�x, y�, x2 � y2 � 1�, �x, y�,

Method � �"DifferentialEvolution", "SearchPoints" � 250��

��3.306868647475238,�x��0.024403079695523768,y�0.21061242715510411��

Using a genetic algorithm approach has its benefits: it is easy to program and

converges quickly. As long as we use a resolution fine enough, our algorithm will

converge to a minimum for any number of digits. However, this approach does

not guarantee that the minimum found is the true global minimum. Repeated

runs of the algorithm will only increase confidence, which makes our algorithm

useful for initial investigations but not for getting a complete solution. Next, we

will be looking at algorithms devised using interval arithmetic which will not only

give us a correct answer, but will provide a proof of correctness as well.

4.2 I A

Using the ideas from Chapter 2 we are able to devise an algorithm to pinpoint

the location of the global minimum. Mathematica has interval arithmetic built

in and allows for elementary functions (such as f) to be applied to intervals.

Using elementary algebra, we previously found that the global minimum must

lie within the square R = [−1, 1] × [−1, 1]. Using interval arithmetic we can

verify this result since the interval value of f when applied to the half-plane

−∞ < x ≤ −1 is [−3.223,∞]. The same is true if we rotate this half-plane 90◦, 180◦,

and 270◦ around the origin. What this shows us is that in these four regions (the

complement of R) the function is greater than −3.223. Using our grid search we

4. Hidden Complexity 46

were able to get an upper bound of −3.24 so we can ascertain that these regions

can be ignored. In Mathematica this can be done quite easily.

A Mathematica Session

f�Interval����, �1.��, Interval����, ����

f�Interval��1., ���, Interval����, ����

f�Interval����, ���, Interval����, �1.���

f�Interval����, ���, Interval��1., ����

Interval���3.22359, ���

Interval���3.22359, ���

Interval���3.22359, ���

Interval���3.22359, ���

We will first present a simple subdivision algorithm to get a high-precision

enclosing box around the global minimum. Then knowing a precise location

of the global minimum, we may use a variation of Newton’s method which

converges quadratically to the global minimum, giving us whatever number of

digits we desire.

4.2.1 S & D

Since our algorithm will use a subdivision process, the title “Search & Destroy”

seems appropriate. In general, the algorithm will be searching the rectangle R and

destroying any regions within R that do not have a chance of containing the global

minimum. At each iteration of the algorithm, R will be subdivided into smaller

rectangles. The candidates for removal can be identified by estimating the size of

the function and its gradients. This process was the one used by the Wolfram

team during the SIAM challenge and is one of the basic algorithms of interval

arithmetic [6]. To make this more succinct, we start with R and the knowledge

that the f -value for the global minimum is less than −3.24. We then repeatedly

4. Hidden Complexity 47

subdivide R into smaller rectangles and retain only those subrectangles T which

have a possibility of containing the global minimum. At each iteration, the

subrectangles become candidates to be in T only if they pass the three conditions

below. Throughout the rest of this chapter, we will denote f [T] as the enclosing

interval for { f (t) : t ∈ T}.

(1) f [T] is an interval whose left end is less than or equal to the current upper

bound on the absolute minimum.

(2) fx[T] is an interval whose left end is negative and right end is positive.

(3) fy[T] is an interval whose left end is negative and right end is positive.

For step (1), we need to keep track of the current upper bound. It is important

to improve the upper bound as quickly as possible. In this implementation, the

upper bound at each iteration will be determined by taking the min over all the

upper bounds of intervals in f [T]. A possible improvement to this is called

opportunistic evaluation. After subdivision, we can evaluate f at the rectangle

centers and gain more information about the function f [6]. More importantly, this

pointwise evaluation may give us a better upper bound. Steps (2) and (3) arise

from the fact that our global minimum is a critical point and the gradients change

from negative to positive for minima. Trying (1) by itself would quickly lead to a

region that contains the global minimum. However, without (2) and (3) and due

to the flat nature of the function near the minimum, the number of rectangles

blows up. For example, after running Algorithm 4.2 for 8 iterations the number of

rectangles has decreased to 13 whereas after 20 iterations the number of rectangles

remaining has increased to 25757. Using (2) and (3) allows us to design an

algorithm that is more aggressive in removing rectangles and will converge to an

4. Hidden Complexity 48

answer. For our subdivision process, we have found that uniformly dividing each

rectangle into four smaller rectangles is sufficient to get a solution.

Algorithm 4.2 (Using Intervals to Minimize a Function)

Assumptions: An interval arithmetic implementation is available that can evaluate

f , fx and fy.

Input: The objective function f (x, y), the search rectangle R, a bound ε on the

absolute error in the location of the minimum of f in R, an upper bound b

on the lowest f -value in R, and a bound imax on the number of iterations to

provide a definite stopping criteria.

Output: Interval approximation to the location of the minimum with interval size

less than ε and the f -value at that location.

Notation: Let R denote the set of candidate rectangles, a0 and a1 be the lower and

upper bounds, respectively, on the f -value sought, and an interior

rectangle to be defined as one that lies within the interior of R.

1 R = {R}

2 i = 0

3 a0 = −∞

4 a1 = b

5 while |a1 − a0| > ε and i < imax

6 i = i + 1

7 R = the set of all rectangles that arise from uniformly dividing each rectangle in

R into 4 smaller rectangles.

8 / / Update the current upper bound.

9 a1 = min
(
a1,minT∈R(f [T])

)
10 / / Perform step (1).

11 Delete any rectangle from R for which the left end of f [T] is not less than a1

4. Hidden Complexity 49

12 / / Perform steps (2) and (3).

13 Delete any rectangle from R for which fx[T] does not contain 0 or fy[T] does not

contain 0.

14 / / Update the current lower bound.

15 a0 = minT∈R

(
f [T]

)
16 end while

17 return the approximate location of the minimum and its f -value.

Example code for Algorithm 4.2 can be found in Appendix B. The implementa-

tion takes very little time to run. Using a tolerance ε of 10−12 yields a result that is

correct to 12 digits in a few seconds after running through 47 iterations. The total

number of rectangles examined was 1372 and the number of candidate rectangles

after each subdivision step are:

4, 16, 64, 240, 440, 232, 136, 48, 24, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4.

We can see that on the third iteration, the algorithm began to discard rectangles.

After 11 rounds, only one rectangle remained and was continuously subdivided

into 4 rectangles until the given tolerance was met. Figure 4.4 shows the first 12

iterations of our algorithm and visually illustrates which rectangles were removed.

Algorithm 4.2 provides the first example of how we can get an arbitrary

amount of digits to our solution using interval arithmetic. However, this method

does not lend itself well to extreme precision. As mentioned before, the obvious

way to improve our algorithm is to switch to a root finder on the gradient once we

have a very good approximation to the location of the global minimum. As in R,

4. Hidden Complexity 50

we are able to use Newton’s method to quadratically converge to a critical point.

Since interval arithmetic is just an extension of R we will be introducing in the

next section an algorithm that utilizes the gradient search method in conjunction

with Algorithm 4.2 to get a very accurate solution.

Bound � �3.24 Bound � �3.2757 Bound � �3.2917

Bound � �3.24 Bound � �3.24 Bound � �3.24

Bound � �3.24 Bound � �3.24 Bound � �3.24

Bound � �3.24 Bound � �3.24 Bound � �3.24

Figure 4.4: The first 12 iterations of Algorithm 4.2.

4. Hidden Complexity 51

4.2.2 N & K

Although Algorithm 4.2 solves our problem to a sufficient amount of digits,

one improvement we can make is using a set of techniques called interval

Newton methods. This idea originated from Ramon Moore [13] in 1966. There are

generally two approaches to interval Newton methods. One is the “process of

elimination” method used in Algorithm 4.2 which eliminated intervals that were

not zeros of the gradient function. Another technique, involves the use of interval

contractions; that is, interval functions F with the property that

F(X) ⊂ X. (4.1)

If in addition to (4.1) there exists a positive real number R < 1 such that

w
(
F(X)

)
≤ R · w(X)

then we call F a strong interval contraction. Here, w(X) is the width of the interval X

as defined in Section 2.2.

Similar to a contraction mapping in R, iterating an interval contraction F

yields a nested sequence of intervals which converges to an interval containing

a fixed point based on the restriction imposed by F. If F is a strong interval

contraction, then this process will converge to a degenerate interval based on the

restriction imposed by F.

The best way to illustrate the interval Newton method is to first introduce it in

one-dimension. Suppose that f is a real-valued function bounded on x ∈ [a, b] and

f has a continuous derivative f ′ on [a, b]. Then for x, y ∈ [a, b] we have from the

4. Hidden Complexity 52

mean-value theorem that

f (x) = f (y) + f ′
(
y + θ(x − y)

)
(x − y) (4.2)

for some θ ∈ [0, 1]. Now if x is a zero of f and if f ′ has a constant sign on [a, b] (i.e.

no zeros) then we may rearrange (4.2) to get

x = y +

 1

f ′
(
y + θ(x − y)

) f (y). (4.3)

Thus y is a fixed point of the function on the right-hand side of (4.3) if and only if

it is a zero of f . By approximating θ by 0, we may iterate the right side of (4.3) to

approximate the root of f .

Now let F′ be an interval extension of f ′. For X ⊂ [a, b] we define the interval

function N (for Newton) by

N(X) := m(X) −
(

1
F′(X)

)
f
(
m(X)

)
(4.4)

where m(X) is the midpoint of the interval X as in Section 2.2. To create an interval

Newton method to find roots to our rational function f , we begin by choosing X0

to be a starting seed and define a sequence of intervals X1,X2, . . . with

Xn+1 := N(Xn) ∩ Xn. (4.5)

We may then iterate the right side of (4.4) using each Xi to get an interval bound

on the roots of f . By using the interval extension F to evaluate the range of values

4. Hidden Complexity 53

of f , we may use in place of (4.4) the more general form

N(X) := m(X) −

F
(
m(X)

)
F′(X)

 . (4.6)

This interval Newton method can easily be extended to higher dimensions

given certain assumptions. If f : Rn
→ Rn is continuously differentiable and F is

the interval extension of f , then we may define the Newton operator [6] on the

n-dimensional box X by

N(X) := m(X) − J−1
· F

(
m(X)

)
, (4.7)

where J is the interval Jacobian

F′(X) :=
(
∂Fi

∂x j
(X)

)
i j

for i, j = 1, 2, . . . ,n. (4.8)

Here J−1 is obtained by the standard arithmetic interval operations that arise in the

computation of a matrix inverse. It is easy to see that if n = 1 then (4.7) is simply

the statement of (4.6). Note that N(X) = [−∞,∞] if 0 ∈ F′(X). Having defined the

Newton operator for n-dimensions, we may now begin to devise an algorithm to

find roots of our function f . The one-dimensional properties of N(X) are as

follows.

Theorem 4.1 ([6],[13]). Suppose f : R→ R is a continuously differentiable function

with interval extension F and X = [a, b] is a finite interval. Then the Newton operator

N(X) as defined by (4.4) has the following properties:

(a) If N(X) ⊆ X, then f has at most one zero in X.

(b) If r is a simple root of f in X, then r lies in N(X).

4. Hidden Complexity 54

(c) If N(X) ⊆ X, then f has a zero in X.

Proof. Clearly if f ′ has a zero in X, then given that

⋃
x∈X

f ′(x) ⊂ F′(X),

we know F′(X) is an interval containing a zero so N(X) is undefined. So, we will

assume that F′(X) does not contain zero and that F
(
m(X)

)
is defined.

(a) Consider the case when f has two distinct zeros x1, x2 ∈ X. If this is true,

then F′ must have a zero in between [x1, x2] and thus the derivative vanishes

on this interval, making N(X) undefined. Thus a necessary condition for

N(X) to be defined is that X contain at most one zero of f .

(b) If r ∈ X is a simple root of F, then F(r) = 0. If m(X) = r, then using (4.4)

we get N(X) = r ∈ X. Otherwise, suppose that m(X) > r and consider the

interval
[
r,m(X)

]
. Since f ′ is continuous on

[
r,m(X)

]
, it follows from the

mean-value theorem that there exists a c ∈
[
r,m(X)

]
⊂ X such that

f ′(c) =
f (r) − f

(
m(X)

)
r −m(X)

.

But since r is a zero of f , we have that

r = m(X) −
f
(
m(X)

)
f ′(c)

.

Since f ′(c) ∈ F′(X), we can conclude from (4.4) that r ∈ N(X). The case

where m(X) < r can be treated similarly to the case m(X) > r.

4. Hidden Complexity 55

(c) By assumption F′(x) , 0 for x ∈ X. Since f ′ is continuous on X, by the

mean-value theorem there exists c1 ∈
[
a,m(X)

]
and c2 ∈

[
m(X), b

]
such that

f ′(c1) =
f
(
m(X)

)
− f (a)

m(X) − am(X) −
f
(
m(X)

)
f ′(c1)

 − a = −
f (a)

f ′(c1)
(4.9)

and

f ′(c2) =
f (b) − f

(
m(X)

)
b −m(X)

b −

m(X) −
f
(
m(X)

)
f ′(c2)

 = f (b)
f ′(c2)

. (4.10)

Since N(X) ⊆ X = [a, b], each expression on the left side of (4.9) and (4.10) is

positive. Therefore, their product is also positive. However, f ′(c1) and f ′(c2)

have the same sign since F′(X) does not contain zero, so the product f (a) f (b)

must be negative and therefore by the intermediate value theorem f has a

zero in X.

�

In addition to Theorem 4.1 we have the following Lemma which allows us to

compute on intervals of nonzeros of f (i.e. to compute on intervals that contain x

such that f (x) , 0) as well as to narrow down intervals which may contain a zero

of f .

Lemma 4.2 ([13]). Either N(X) ∩ X is empty, in which case X does not contain a zero of

f , or else N(X) ∩ X is an interval which contains a zero of f if X does.

Using both Theorem 4.1 and Lemma 4.2 we may devise a simple subdivision

4. Hidden Complexity 56

algorithm to find zeros of a given function f . We first subdivide our seed interval

into subintervals and for each subinterval check whether the Newton condition,

N(X) ⊂ X, holds. If it does, then from (a) we know that f has at most one zero in

X. If N(X) ∩ X = ∅we know from Lemma 4.2 that there are no zeros in X. If

neither situation applies, we just subdivide and try again. However, if the Newton

condition holds we can iterate the N operator as in (4.5). If we are close enough to

a zero of f , this algorithm will converge [10, Theorem 11.15.6] and will do so

quadratically [11, Theorem 1.14]. We will continue this subdivision process until

the width of the remaining interval is less than a required precision. For an

example and more specific statement of this algorithm see [13].

Newton’s method for intervals has its share of difficulties. Although we know

Newton’s method will converge, it may not converge to a root but rather a real

number in N(X) ∩X [10]. This is due to the fact that we must approximate the

interval value of J−1 and that there may be zeros of f for which the Newton

condition will never hold. We may think of the Newton algorithm as a queue: in

one step we remove intervals from the queue based on some properties of the

Newton operator while at another step we subdivide intervals and make the

queue larger. It also may be the case that these intervals are added to the list of

solutions. If our queue becomes empty we are done since we either have found a

solution or no solution exists. On the other hand, we may stop after a certain

number of iterations, thus leaving us with unresolved intervals. This case would

happen if there are multiple roots such as in f = (x− 2)2 or if a root exists at 0 as in

g = x2 [6].

Although this algorithm works well in one dimension, when looking at higher

dimensions it becomes difficult to guarantee the existence of a zero in as in part (c)

of Theorem 4.1. This forces us to use a variation of the Newton operator. One

4. Hidden Complexity 57

method is to use a preconditioning matrix and the Hansen-Sengupta operator [15].

The other method makes use of something called the Krawczyk operator. The

Krawczyk method was introduced in 1969 by R. Krawczyk and first analyzed in

1977 by Moore [14]. It is derived by considering the classical multivariate Newton

method as a fixed point iteration. The benefit of this approach over Newton’s

method is not only that it will computationally verify the existence of a solution in

a given region, but it does so without inverting an interval matrix. In general,

Krawczyk’s method allows us to find a solution to a system of nonlinear equations

using interval methods that will converge at least linearly with guaranteed error

bounds [14].

Let f : D ⊆ Rn
→ Rn be continuously differentiable in the open domain D. We

assume that f and f ′ have continuous, inclusion monotonic interval extensions F

and F′ defined on interval vectors contained in D. Let X = (X1,X2, . . . ,Xn) be

contained in D where X1,X2, . . . ,Xn are closed bounded real intervals. Finally let

J be defined as in (4.8). Now we define the operator P(X) to be

P(X) := X − YF(X) (4.11)

where Y is some type of approximation to J−1. One natural choice for Y is

J−1
(
m(X)

)
, and the other is the inverse of the matrix of midpoints of the intervals

in the matrix J. The latter is faster since J need to be computed anyway. By

choosing this as our approximation for Y, we are able to avoid the inversion of the

matrix J as required. The operator P is carefully chosen to help guarantee the

existence of solutions and has the following property:

Lemma 4.3 ([14]). If P(X) maps X into itself, then f (x) = 0 has a solution in X.

4. Hidden Complexity 58

We can now define the Krawczyk operator as follows:

K(X) := m(X) − YF
(
m(X)

)
+ (I − YJ)

(
X −m(X)

)
(4.12)

where I is the n × n identity matrix. Note that to actually do this computation

in Mathematica it is required that we put a small interval around m(X). In the

simplest sense, the Krawcyzk method is just the iteration Xn+1 := K(Xn)∩Xn

applied to subintervals of a seed interval X0. To understand the rationale behind

the Krawczyk operator, consider the form the mean-value theorem takes in

n-dimensions. Given F as defined on page 57 and x and y in an n-dimensional box

X, there are points c1, c2, . . . , cn ∈ X so that F(x) − F(y) =
(
∇Fi(ci)

)
(x − y), where(

∇Fi(ci)
)

denotes an n × n matrix with i indexing the rows. This can be stated in

the following lemma:

Lemma 4.4 ([14]). f (x) − f (y) ∈ F′(X)(x − y) for all x, y ∈ X.

Now, to show that the definition of K(X) follows directly from the definition of

P and the mean-value theorem, let P′(X) denote the interval enclosure of P′ on X.

By the mean-value theorem, the box Q = P
(
m(X)

)
+ P′(X)

(
X−m(X)

)
contains P(X)

where P(X) denotes the exact image, {P(x) : x ∈ X}. Since P′(x) = I − YF′(x) and J

is an approximation of F′(x), we may take I − YJ to be the enclosure of P′(x). Thus,

Q becomes precisely the statement of K(X) from (4.12) and thus P(X) ⊆ K(X). We

may now generalize the results of the Krawczyk operator to n-dimensions as

follows after the necessary statement of the following theorem.

Theorem 4.5 (Brouwer fixed point theorem, [11]). Let D be homeomorphic to the

closed unit ball in Rn, and suppose P is a continuous mapping such that the range

Pu(D) ⊂ D. Then P has a fixed point, i.e. there is an X ∈ D such that P(X) = X.

4. Hidden Complexity 59

Theorem 4.6 ([6]). Suppose f : D ⊆ Rn
→ Rn is continuously differentiable in the open

domain D and assume that f and f ′ have continuous, inclusion monotonic interval

extensions F and F′ defined on interval vectors contained in D. Let X = (X1,X2, . . . ,Xn)

be a finite box contained in D where X1,X2, . . . ,Xn are closed bounded real intervals.

Then, J = F′(X) is a component wise interval enclosure, and Y is the inverse of the matrix

of midpoints of the intervals in J. We will assume that Y is nonsingular. Let K be the

Krawczyk operator as defined in (4.12). Then:

(a) If r is a root of F = 0 in X, then r lies in K(X).

(b) If K(X) ⊆ X, then there exists a solution to f (x) = 0 in X.

(c) If K(X) ⊂ X, then f has at most one zero in X.

Proof.

(a) Since P(X) ⊆ K(X), then P(r) ∈ K(X). But since F(r) = 0, it follows that

P(r) = r − YF(r) = r and thus r lies in K(X).

(b) We will present two ways of proving this claim with the first attributed to

[14] and the second to [6]. For the first proof, we know from the definition of

P(x) from (4.11) that

P(x) = x − Y f (x) = y − Y f (y) + x − y − Y
(

f (x) − f (y)
)

for all x ∈ X.

We may use Lemma 4.4 to obtain

P(x) ∈ y − Y f (y) +
(
I − YF′(X)

)
(X − y) for all x ∈ X.

Thus, P(x) ∈ K(X) for all x ∈ X. If K(X) ⊆ X, then P maps X into itself and

from Lemma 4.3 it follows that f (x) = 0 has a solution in X.

4. Hidden Complexity 60

For the second proof, since we have the containment relation P(X) ⊆ K(X) ⊆

X, P is a contraction mapping and therefore by Theorem 4.5, P has a fixed

point in X with this fixed point being the solution to f (x) = 0 in X.

(c) This is part (iii) of Theorem 5.1.8 in [11].

�

Given Theorem 4.6 we may devise a local root-finding algorithm that will find

a root of f given the assumption that our initial box X contains a root. By parts (b)

and (c) of Theorem 4.6 we know that if the Krawczyk condition K(X) ⊂ X holds,

then f has one and only one root in X and that root lies in K(X). So we may iterate

K until we know the root to the desired accuracy.

The importance of the Krawczyk method to the SIAM problem at hand is that

it will speed up the process of finding the global minimum once we are given a

box that is known to contain it. After 11 iterations we found that Algorithm 4.2

gave us a box that is guaranteed to contain the global minimum. Using this box,

we can use the Krawczyk method to zoom into the unique critical point in the box

giving us a speed up of about 10% [6]. To implement this, we need only to add the

following after the gradient check (step 13) in Algorithm 4.2:

If R contains only one rectangle X, compute K(X).

If K(X) ∩ X = ∅, then there is no critical point, and the minimum is on the

border. So do nothing.

If K(X) ⊂ X, then iterate the K operator starting with K(X) until the desired

tolerance is reached.

Use the last rectangle to set a0 and a1 and then end the while loop.

4. Hidden Complexity 61

The extended implementation of Algorithm 4.2 using the Krawczyk operator can

be found in [6]. There are multiple improvements to this algorithm as seen in

[10, 11]. For example, we can use the Hessian to eliminate n-dimensional intervals

on which the function is not concave up.

In summary, interval analysis is an important tool for global optimization

problems since it gives high precision results that are verifiably correct. Although

it is commonplace in the scientific computing community to just get the answer,

interval analysis is another method that will provide a solid algorithm that will

provide proven results.

CHAPTER 5
A DM

Problem. Let A be the 20, 000 × 20, 000 matrix whose entries are zero everywhere

except for the primes 2, 3, 5, 7, . . . , 224737 along the main diagonal and the number

1 in all the positions ai j with |i − j| = 1, 2, 4, 8, . . . , 16384. What is the (1, 1) entry of

A−1?

Out of all the problems in the SIAM challenge, this problem proved to be one

of the easiest with each of the 78 teams getting an average of 8.8 points. However,

I found this to be the most difficult out of the problems I studied since it required

an extensive knowledge of linear algebra. Unlike the other problems, we will not

solve this problem using interval arithmetic, but rather use interval arithmetic to

show that round-off errors during our computations will not perturb our answer

too much. This problem is unique since we are able to essentially solve it using

one command in MATLAB or Mathematica using standard IEEE double-precision.

It is also the only problem in the SIAM challenge to be solved exactly [6].

In most numerical analysis textbooks, in the chapter on numerical linear

algebra it is usually implicitly stated that the problem of finding the inverse of a

matrix is itself a task better left undone. The task generally requires a huge

amount of operations and any algorithm to find one is usually numerically

62

5. A Daunting Matrix 63

unstable, with the chance of introducing approximation errors. A better way to

approach this problem is to reformulate it as a linear equation of the form

Ax = b with b = (1, 0, 0, . . . , 0)T and x = (x1, . . . , xn)T. (5.1)

Observe that since

A−1 =


x1 ∗ · · · ∗

...
...
. . .

...

xn ∗ · · · ∗


then our problem is just the first of entry of x in (5.1), namely, x1. If we assume the

determinant of A is non-zero, then the solution of the linear system can be written

as x = A−1b. As stated before this approach is not adopted in practice.

Before we can discuss another method of solving this linear system, we must

figure out a way to store our matrix A on a computer. Having our matrix stored in

an efficient data structure will allow us to study why this problem is so daunting.

5.1 A F L

The given matrix has two defining properties: one relates to its main diagonal and

the other deals with the other non-zero entries. This allows us to define A in the

following way:

Aii = pi with pi the ith prime number,

Ai j = 1 if |i − j| is a power of 2, and

Ai j = 0 otherwise.

(5.2)

5. A Daunting Matrix 64

Thus for n = 20000, A is a highly sparse matrix with O(n log n) nonzero elements

(554,466 nonzero entries to be exact). Out of a total of n2 = 4 · 108 entries total, this

accounts for about 0.14% [6]. In Figure 5.1 we can visually represent A and see

how few nonzero entries there are. To prevent confusion in the future, we will

denote the matrix for the problem at hand by An.

Figure 5.1: The sparsity pattern of An. The black represent nonzero entries while the
white represents zero entries.

A Mathematica Session

Mathematica provides tools for dealing with sparse arrays; that is, we are able to

build, store, and operate on them. Using SparseArray we can create an efficient

container for A as is done in the following code.

n � 20000;

b � Table�0, �n��;

b�1� � 1;

A � SparseArray���i_, i_� � Prime�i��, n� � �# � Transpose�#�	 &�

SparseArray�Flatten�Table��i, i � 2j� � 1, �i, n � 1�, �j, 0, Log�2., n � i���, n�;

5. A Daunting Matrix 65

Using this method allows us to Generate A in 1.656 seconds and consumes

approximately 4.3MB.

When designing the SIAM challenge, Trefethen kept in mind that he needed to

make these problems solvable. To make the equation Ax = b solvable it helps that

A has some “nice” properties. Clearly A is symmetric with a positive diagonal

and it is also sparse, but what makes A unique is that it is also positive definite. A

matrix A is positive definite [17] if for every non-zero vector x

xTAx > 0. (5.3)

This notion is not a very intuitive one, but its relevance will be explained later.

From [20] we find the additional property that a real symmetric matrix A is

positive definite if and only if there exists a real nonsingular matrix M such that

A =MMT (5.4)

There are two algorithms that may be used to prove that An is positive definite:

the Cholesky factorization and the Reverse Cuthill-Mckee algorithm. When given An as

input, both algorithms complete which by construction proves that An is positive

definite [6]. If we wished to solve the linear system directly we would have to use

either of these two in our sparse matrix solvers. Both of these algorithms allow us

to solve for x1 and they only give our solution to 15 digit accuracy. Because of the

large memory constraints put on the computer for storing the factorization of

An using either of these methods, it becomes difficult to get higher precision.

Therefore we need to consider other methods for finding our solution. It is

important to note that with An being positive definite, there are already a handful

of algorithms that can deal with finding its inverse [5]. We will be looking at the

5. A Daunting Matrix 66

Conjugate Gradient method which is an iterative method that lends itself well to

sparse symmetric positive definite matrices. Before we can state the algorithm, we

have to introduce a lot of mathematical machinery that will illustrate why this

method is suitable for a sparse symmetric positive definite matrix like An.

The main source of information I used for understanding the Conjugate

Gradient method in the following discussion came from a paper [17] written by

Jonathan Shewchuk, a student at Carnegie Mellon University. His goal in writing

the paper was to create an extensive resource for those who wished to understand

the Conjugate Gradient method which was less obscure than the description

found in most textbooks. Many of the derivations in the following sections come

from this paper as well.

5.2 Q F

Since we are working in Rn we need a way to multiply vectors, so we will define a

generalization of the dot product. The inner product of two vectors x,y ∈ Rn is

written 〈x,y〉 = xTy which represents the scalar sum
∑n

i=1 xiyi. We also have the

relation that 〈x,y〉 = 〈y, x〉.

The quadratic form is simply a scalar, quadratic function of a vector x ∈ Rn with

the form

f (x) :=
1
2

xTAx − bTx + c (5.5)

where A is a matrix, b is a vector in Rn, and c is a scalar constant.

To help illustrate the Conjugate Gradient method, we will demonstrate several

5. A Daunting Matrix 67

ideas by applying the quadratic form to

A =

3 2

2 6

 , b =

 2

−8

 , c = 0. (5.6)

For this problem, the solution is x = (2,−2)T. The quadratic form and the contour

plot corresponding to the problem in (5.6) are shown in Figure 5.2.

-4
-2

0
2

4
6-6

-4

-2

0

2

4

0
50

100

150

4
-2

0
2

4

(a) 3D plot of the quadratic form.

-4 -2 0 2 4 6
-6

-4

-2

0

2

4

(b) Contour plot of the quadratic form.

Figure 5.2: Two different views of the quadratic form of our sample problem.

One thing we can notice about Figure 5.2 is that the surface determined by f (x)

is a paraboloid, with the solution to the linear system Ax = b being the global

minimum. In fact, for every positive definite matrix A and any vector b, the

surface defined by f (x) will be a paraboloid bowl and f (x) is minimized by the

solution to Ax = b [17].

5. A Daunting Matrix 68

Before we prove this, we introduce one additional concept. The gradient of a

quadratic form is defined to be

f ′(x) =



∂
∂x1

f (x)

∂
∂x2

f (x)
...

∂
∂xn

f (x)


. (5.7)

The gradient is a vector field that points in the direction of greatest increase of f (x).

Figure 5.3 illustrates the gradient vectors for the example defined in (5.6).

-4 -2 0 2 4 6

-6

-4

-2

0

2

4

Figure 5.3: The gradient field of f ′(x). The arrow indicates a gradient sampled at a
x ∈ R2. It points in the direction of steepest increase of f (x) and is orthogonal to the
contour lines of Figure 5.2.

Now we will prove what we claimed earlier about the relation between f (x)

and Ax = b.

Theorem 5.1 ([17]). If A is a symmetric positive definite matrix, the solution to Ax = b

is a critical point of f (x). In fact, x is equal to the global minimum of f (x).

5. A Daunting Matrix 69

Proof. Given f (x) as in (5.5), we want to find f ′(x). Through some tediuous

computation, applying (5.7) to f (x) allows us to derive:

f ′(x) =
1
2

ATx +
1
2

Ax − b. (5.8)

Since A is symmetric, AT = A and (5.8) reduces to

f ′(x) = Ax − b. (5.9)

Setting the gradient equal to zero, we obtain the linear system Ax = b which we

wish to solve. Therefore, the solution to Ax = b is a critical point of f (x). Now let x

be a point that satisfies Ax = b and minimizes the quadratic form (5.5) and let ε be

a vector error term. Then

f (x + ε) =
1
2

(x + ε)TA(x + ε) − bT(x + ε) + c

=
1
2

(xT + εT)A(x + ε) − bT(x + ε) + c

=
1
2

(xTAx + xTAε + εTAx + εTAε) − bTx − bTε + c

=
1
2

xTAx + εTAx +
1
2
εTAε − bTx − bTε + c (since A is symmetric)

=
(1
2

xTAx − bTx + c
)
+

(1
2
εTAε + εTb − bTε

)
= f (x) +

1
2
εTAε.

Since A is positive definite, then the latter term is positive for all ε , 0. Therefore,

x minimizes f . �

Having proved Theorem 5.1, we have converted the problem of solving the

linear system to one of minimizing our quadratic form f (x). By doing so, we are

able to use methods like Steepest Descent (which we will discuss in the next

5. A Daunting Matrix 70

section) and the Conjugate Gradient method to find a solution. Using these

methods will provide a more stable algorithm for finding the (1, 1) entry of A−1.

5.3 S D

For the method of Steepest Descent, we start at an arbitrary point x0 and slide

down to the bottom of the paraboloid defined by f (x). We take a series of steps

x1, x2, . . . until we come within a reasonable distance from the true solution x. This

stopping criteria could be an absolute error bound or we could stop our iteration

after a certain period of time. When we take a step, we choose a direction in which

f decreases most quickly; that is, the opposite of f ′(xi). Making use of (5.9), we

find that this direction is

− f ′(xi) = b − Axi.

Let us introduce some additional definitions that are useful for our study of

the Steepest Descent method and the Conjugate Gradient method. The error

ei = xi − x is a vector that indicates the distance we are from the true solution. The

residual ri = b − Axi indicates how far we are from the correct value of b at each

step i. Using the fact that x = xi − ei, Ax = b and the definition of residual, we can

easily see that ri = −Aei. More importantly, we should think of the residual as the

direction of steepest descent [17].

For our first step, we will step along the direction of steepest descent – the

residual. In other words, we will be choosing a point

x1 = x0 + αr0. (5.10)

This leaves us with the question: how do we find an appropriate α so that we

5. A Daunting Matrix 71

optimize our choice for our next search direction? To do this, we need to use a line

search. A line search is a procedure that finds an appropriate α to minimize f

along a line. From calculus, αminimizes f along a line when the directional

derivative d
dα f (x1) is equal to zero. Using the chain rule, it follows that

d
dα

f (x1) = f ′(x1)T d
dα

x1 = f ′(x1)Tr0 = 〈 f ′(x1), r0〉.

Setting this expression to zero, we find that α should be chosen so that r0 and f ′(x1)

are orthogonal; that is, when the gradient is orthogonal to the search line [17].

To determine αwe perform the following set of operations:

f ′(x1)Tr0 = 0

rT
1 r0 = 0 (since f ′(x1) = −r1)

(b − Ax1)Tr0 = 0(
b − A(x0 + αr0)

)T
r0 = 0

(b − Ax0)Tr0 − α(Ar0)Tr0 = 0

(b − Ax0)Tr0 = α(Ar0)Tr0

rT
0 r0 = αrT

0 (Ar0)

α =
rT

0 r0

rT
0 (Ar0)

.

Using our previous knowledge, we arrive at a general form for the method of

5. A Daunting Matrix 72

Steepest Descent:

ri = b − Axi (5.11a)

αi =
rT

i ri

rT
i (Ari)

(5.11b)

xi+1 = xi + αiri. (5.11c)

The method above runs until it converges. An example run shown in Figure

5.4 uses the values from (5.6) and code from Appendix C. The zig zag path

appears because each gradient is orthogonal to the previous gradient.

-4 -2 0 2 4 6
-6

-4

-2

0

2

4

x0

Figure 5.4: For our example, the method of Steepest Descent converges to within a
tolerance of 10−6 in 22 iterations.

The algorithm above suffers one flaw, there are two matrix-vector multiplica-

tions per iteration. Although the example from (5.6) converges quite quickly, a

matrix of larger size like in the SIAM problem would run quite slow. To combat

5. A Daunting Matrix 73

this, notice that by premultiplying both sides of (5.11c) by −A and adding b we

get:

b − Axi+1 = (b − Axi) − αiAri

ri+1 = ri − αiAri

(
by (5.11a)

)
. (5.12)

For the first iteration of our algorithm, we need (5.11a) to calculate r0, but for

every other iteration we may use (5.12). The benefit of this approach is that we

have eliminated one matrix-vector product and we are left with only the product

Ari which appears in (5.11b) and (5.12). The disadvantage to this approach is that

we are calculating the residual without any input from xi which may cause our

algorithm to converge to a point near the true solution x [17]. This is due to

roundoff errors in floating-point calculations. For more complex expressions than

in our example the error might be even greater. By periodically computing (5.11a),

we can avoid this problem. In the code in Appendix C, I recompute the residual

every 5 iterations.

5.4 TM  C D

One disadvantage to the method of Steepest Descent is that we often find

ourselves taking steps in the same direction as earlier steps (as seen in Figure 5.4).

This shortcoming leads us to develop a new algorithm which utilizes results from

the Steepest Descent algorithm.

5. A Daunting Matrix 74

5.4.1 C

To begin, choose a set of orthogonal search directions d0,d1, . . . ,dn−1. In each search

direction we will take exactly one step and that one step will be sufficient enough

to line up with x. Thus after n steps, we will be done. In general, for each step we

will choose a point

xi+1 = xi + αidi

ei+1 = ei + αidi.
(5.13)

To make sure that we never step in the same direction of di again, we should have

the condition that ei+1 be orthogonal to di. Using this fact, we can find αi:

dT
i ei+1 = 0

dT
i (ei + αidi) = 0

(
by (5.13)

)
αi = −

dT
i ei

dT
i di
. (5.14)

Unfortunately, αi is defined in terms of ei and if we knew the value of ei, then

our problem would already be solved. To fix this, we should make the search

directions A-orthogonal instead of orthogonal. We say that two vectors di and d j,

i , j, are A-orthogonal or conjugate if

dT
i Ad j = 0.

Using the new condition that ei+1 be A-orthogonal to di, we claim that this is

equivalent to finding the minimum point along the search direction di, as done for

the line search in the method of Steepest Descent. To see this, set the directional

5. A Daunting Matrix 75

derivative equal to zero:

d
dα

f (xi+1) = 0

f ′(xi+1)T d
dα

xi+1 = 0

−rT
i+1di = 0 (since f ′(xi+1) = −ri+1)

dT
i Aei+1 = 0 (since ri+1 = −Aei+1).

By following the same process as the derivation for (5.14) and using the fact

that the search directions are A-orthogonal we get the following:

dT
i Aei+1 = 0

dT
i A(ei + αidi) = 0

(
by (5.13)

)
αi = −

dT
i Aei

dT
i Adi

(5.15)

=
dT

i ri

dT
i Adi

. (5.16)

Unlike (5.14), we can actually compute αi in this instance. By replacing the search

direction di with the residual ri in (5.16) it is easy to see the relationship between

the method of Conjugate Directions and the method of Steepest Descent: (5.16)

would be identical to (5.11b).

By choosing the search directions carefully, we will be able to converge to our

solution x in n steps. The idea is that the initial error e0 can be expressed as a sum

of A-orthogonal components. At each step the Conjugate Directions algorithm

eliminates one of these components; that is, we eliminate the error component αidi

of e0 at step i. We finish this section by proving this result as the following

theorem.

5. A Daunting Matrix 76

Theorem 5.2 ([17]). The method of Conjugate Directions converges in n steps.

Proof. We begin by expressing the error term as a linear combination of search

directions:

e0 =

n−1∑
j=0

δ jd j. (5.17)

To find values for δ j we need to employ a mathematical trick. By premultiplying

the expression in (5.17) by dT
k A, we can all but eliminate one δk. First,

dT
k Ae0 =

n−1∑
j=0

δ jdT
k Ad j,

but since each d vector is A-orthogonal, dT
i Ad j = 0 for i , j. The only case where

we do not get zero is when j = k so

dT
k Ae0 = δkdT

k Adk

δk =
dT

k Ae0

dT
k Adk

.

Once again, since the d vectors are A orthogonal we get

δk =
dT

k A
(
e0 +

∑k−1
i=0 αidi

)
dT

k Adk
.

5. A Daunting Matrix 77

By applying (5.13) k times, we can arrive at a final value for δk:

δk =
dT

k A (e0 + α0d0 + α1d1 + · · · + αk−1dk−1)

dT
k Adk

=
dT

k A (e1 + α1d1 + · · · + αk−1dk−1)

dT
k Adk

...

=
dT

k Aek

dT
k Adk

. (5.18)

By (5.15) and (5.18), we find that αi = −δi. Using this fact gives us a new

view of the error term. As the following will show, the process of building up x

component by component can be seen as eliminating one component from the

error term at each step.

ei = e0 +

i−1∑
j=0

α jd j

(
by (5.13)

)
=

n−1∑
j=0

δ jd j −

i−1∑
j=0

δ jd j

(
by (5.17)

)
=

n−1∑
j=i

δ jd j. (5.19)

Thus after n iterations, every component is cut away and so en = 0 which implies

xn = x. �

5.4.2 G  S D

Although we mentioned that we need a set of A-orthogonal search directions, we

never showed how to find those directions. In this section we will be describing a

way to find this set of search directions {di} using the conjugate Gram-Schmidt

5. A Daunting Matrix 78

process. The Gram-Schmidt process generates conjugate directions from a set of n

linearly independent vectors u0,u1, . . . ,un−1. To construct di, we take ui and

subtract out any components that are not A-orthogonal to the previous d vectors

(as seen in Figure 5.5). In other words, set d0 = u0, and for i > 0 set

di = ui +

i−1∑
k=0

βikdk, (5.20)

where the βik are defined for i > k. Similar to how we found δ j in (5.18), we can

find βi j [17]:

βi j = −
uT

i Ad j

dT
j Ad j

. (5.21)

u0

u1

d0

u∗

u+

d0

d1

Figure 5.5: An illustration of the conjugate Gram-Schmidt process on two vectors in R2.
We start with two linearly independent vectors u0 and u1. Set d0 = u0. Now the vector u1
is composed of two components: u∗, which is A-orthogonal to d0, and u+, which is
parallel to d0. To construct d1, we subtract out u+ leaving only the A-orthogonal portion,
so d1 = u∗.

The main difficulty with using Gram-Schmidt conjugation is that it is

computationally intensive. Calculation of βik takes O(n2) operations due to the

two matrix-vector multiplications. Additionally, previous search directions must

be stored to generate the new search directions and a total of O(n3) operations are

required to generate the entire set. Furthermore, βik and the new search direction

di depend on the previous search directions, which means that roundoff errors

may be introduced and cause the error vectors ei to lose A-orthogonality.

5. A Daunting Matrix 79

Algorithm 5.1 (Method of Conjugate Directions)

Assumptions: A is a sparse symmetric positive definite matrix.

Input: The matrix A, a vector b, a set of linearly independent vectors {ui}, and an

initial guess to the location of the solution x0.

Output: An approximation to the location of the solution to Ax = b.

1 d0 = u0 .

2 for i = 0 to n − 1

3 ri = b − Axi

4 αi = (dT
i ri)/(dT

i Adi)

5 xi+1 = xi + αidi

6 di+1 = ui+1 +
∑i

k=0 β(i+1)kdk

7 end for

8 return xn

The code for Algorithm 5.1 is available in Appendix C. An interesting property

of Conjugate Directions is that if we construct our search directions by conjugation

of the axial unit vectors, the method of Conjugate Directions becomes equivalent

to that of Gaussian elimination. Thus, it was not until the discovery of the

Conjugate Gradient method which made the method of Conjugate Directions

become extremely useful [17].

5.5 TM  C G

Finally we have the background necessary to begin a discussion on the method of

Conjugate Gradients (CG). The CG method aims to improve the method of

Conjugate Directions by improving the computation of the search directions.

To do this, we will construct the di from residuals ri rather than the ui. This

5. A Daunting Matrix 80

makes intuitive sense since the residuals worked well for the method of Steepest

Descent. Another property that make residuals good to work with is that they are

orthogonal to the previous search directions. We can see this by premultiplying

(5.19) by −dT
i A:

−dT
i Ae j = −

n−1∑
k= j

δkdT
i Adk

dT
i r j = 0, for i < k (by A-orthogonality of the d vectors). (5.22)

The benefit is that we are always guaranteed a new, linearly independent

search direction at each step. If the residual is zero, the problem is solved. With

each residual being orthogonal to the previous search direction, it must also be

orthogonal to the previous residuals so

rT
i r j = 0, i , j. (5.23)

Besides the implications listed above, by choosing to use the residuals, we

will show that the CG method will decrease the time complexity of finding the

solution x immensely. To see this, we first notice that we can find the residual

using a recurrence:

ri+1 = −Aei+1

= −A(ei + αidi)
(
by (5.13)

)
= ri − αiAdi. (5.24)

LetDi be the i-dimensional subspace span{d0,d1, . . . ,di−1}. Since the search

vectors are built from the residuals, the subspace span{r0, r1, . . . , ri−1} is equal to

5. A Daunting Matrix 81

Di. From (5.24) we can see that each new residual ri is just a linear combination of

the previous residual and Adi−1. Now given that di−1 ∈ Di, this implies that each

new subspaceDi+1 is formed from the union of the previous subspaceDi and the

subspace ADi. Therefore,

D0 = span{d0}

D1 = D0 ∪ AD0 = span{d0,Ad0}

D2 = D1 ∪ AD1 = span{d0,Ad0,A2d0}

...

Di = span{d0,Ad0,A2d0, . . . ,Ai−1d0}

= span{r0,Ar0,A2r0, . . . ,Ai−1r0}.

The subspace ADi ⊆ Di is called a Krylov subspace since it is formed by

repeatedly applying a matrix to a vector. Most modern iterative methods make use

of Krylov subspaces and have entire books dedicated to their study [19]. To see

why Krylov subspaces makes the CG method efficient, notice thatDi+1 contains

ADi. From (5.23) it follows that the next residual ri+1 is orthogonal toDi+1. Using

this fact implies ri+1 is A-orthogonal toDi. The significance of this is that since ri+1

is A-orthogonal to all the previous search directions (besides di) and so the time to

execute Gram-Schmidt conjugation becomes substantially less due to the fact that

we do not need to eliminate the parts that are not A-orthogonal [17].

To see why we get this speed up, first we may use the fact that our linearly

independent ui are the residuals ri and yields,

βi j = −
rT

i Ad j

dT
j Ad j

. (5.25)

5. A Daunting Matrix 82

Now consider the inner product of ri and r j+1:

rT
i r j+1 = rT

i r j + α jrT
i Ad j

(
by (5.24)

)
α jrT

i Ad j = rT
i r j+1 − rT

i r j

rT
i Ad j =


1
αi

rT
i ri, i = j,

−
1
αi−1

rT
i ri, i = j + 1,

0, otherwise.

(
by (5.23)

)

∴ βi j =


1
αi−1

rT
i ri

dT
i−1Adi−1

, i = j + 1,

0, i > j + 1.

(
by (5.25)

)

As seen above, most of the βi j terms have dropped out when compared to the

method of Steepest Descent. This is because the search directions d j with j < i − 1

are not needed to make di A-orthogonal to all the previous search directions.

Furthermore, it is no longer necessary to store the previous search directions.

Thus, we can see the importance of using the CG method with residuals because

we have reduced the time and space complexity from O(n2) to O(m) where m is

the number of non-zero entries in the matrix A [17].

Before we continue, recall that we chose the ui to be the residuals ri. Then we

have the identity [17]:

dT
i ri = uT

i ri = rT
i ri. (5.26)

5. A Daunting Matrix 83

To simplify our notation, we let βi = βi,i−1 and it follows that

βi =
(1
αi−1

) (rT
i ri

dT
i−1Adi−1

)
=

(
dT

i−1Adi−1

dT
i−1ri−1

) (
rT

i ri

dT
i−1Adi−1

) (
by (5.16)

)
=

rT
i ri

dT
i−1ri−1

=
rT

i ri

rT
i−1ri−1

(
by (5.26)

)
.

We conclude this section with the algorithm for the Conjugate Gradient

method. There are many different derivations of the method found in literature

([19, Chapter 5],[4, Lecture 38], [8, 6.63]) but the algorithm is essentially the same.

Algorithm 5.2 (Conjugate Gradient Method)

Assumptions: A is a sparse symmetric positive definite matrix.

Input: The matrix A, a vector b, an initial guess to the location of the solution x0,

and an upper bound on the number of iterations imax.

Output: An approximation to the location of the solution to Ax = b.

1 d0 = r0 = b − Ax0

2 n = imax

3 for i = 0 to n

4 αi = 〈ri, ri〉/〈Adi,di〉
(
from (5.16) and (5.26)

)
5 xi+1 = xi + αidi

6 ri+1 = ri − αiAdi

7 i f termination criterion is satisfied then exit loop

8 βi+1 = 〈ri+1, ri+1〉/〈ri, ri〉

9 di+1 = ri+1 + βi+1di

5. A Daunting Matrix 84

10 end for

11 return xn

At each round of the for loop the matrix-vector product Adi needs to only be

computed once. Figure 5.6 illustrates the Mathematica code we have included in

Appendix C applied to our example from (5.6). What remains is some type of

termination criterion for Algorithm 5.2

-4 -2 0 2 4 6
-6

-4

-2

0

2

4

x0

Figure 5.6: The Conjugate Gradient method

5.5.1 S C

Like the method of Conjugate Directions, the CG method converges in n iterations.

However for extremely large matrices, it is not feasible to run n iterations due to

the large roundoff error that will occur. This error causes the search vectors to lose

A-orthogonality. Therefore, we need to do some type of convergence analysis to

see how many iterations are necessary to get at least 10 digits of the solution to our

5. A Daunting Matrix 85

problem correct. Later, we will be using interval analysis to show that the residuals

we calculate provide sufficient information to do reliable error estimation.

We begin our analysis by introducing a few new definitions. The spectral radius

of a matrix A is

ρ(A) = max |λi|, λi is an eigenvalue of M.

When dealing with positive definite matrices, the energy norm of a vector e defined

by ||e||A = (eTAe)1/2 =
√
〈Ae, e〉 is much easier to work with than the Euclidean

norm. The CG method minimizes the energy norm of the error term, ||ei||A at each

step [4, Theorem 38.2]. Thus, an important characteristic of the energy norm is

that minimizing ||ei||A is equivalent to minimizing the quadratic form f (xi). The

spectral condition number is defined to be

κ(A) = λmax(A)/λmin(A),

the ratio of the largest to smallest eigenvalue. An ill-conditioned matrix is one in

which the condition number is large. Given a matrix with a large condition

number, the CG method will converge slowly. Finally, the eigenvalues of a matrix

A are called its spectrum.

The properties of convergence of the CG method are determined by the

spectrum of A. This is seen through the following Corollary which says that after

k iterations, the CG method will converge to a solution within the tolerance ε.

Corollary 5.3 ([9, Cor. 8.18]). In order to reduce the error in the energy norm by a factor

of ε, i.e.,

||x − xk||A ≤ ε||x||A,

5. A Daunting Matrix 86

at most k CG iterations are needed, where k is the smallest integer such that

k ≥


√
κ(A)
2

ln (2/ε)

 .
Let us take a look at our SIAM problem. Since the diagonal of An is dominant

for at least the lower half, then a rough approximation of the condition number is

given by the ratio of the largest to the smallest value of the diagonal,

κ(An) ≈
pn

2
=

224737
2

≈ 112369 ≈ 105.

By using numerical eigenvalue routines, one can improve the approximation of

κ(A) to be approximately 2 · 105 [6]. Therefore, to obtain an accuracy of 10 digits

we must choose ε = 10−11 and apply Corollary 5.3 to find

k ≥


√

2 · 105

2
ln

(
2/10−11

) = 5819.

Although choosing k ≥ 5819 will guarantee us 10 digits of accuracy, it may be an

overestimate.

To find a termination criterion, we will put a bound on ||rk||. Using the results

from [6, Lemma 7.1] which shows 1 ≤ λmin(A) ≤ 2, it follows that

〈x, x〉 ≤ 〈Ax, x〉 ≤ 〈A2x, x〉 = 〈Ax,Ax〉.

or in other words,

||x|| ≤ ||x||A ≤ ||Ax||.

5. A Daunting Matrix 87

If we let x̂ denote the (1, 1) entry of A−1, then for rk = b − Axk we have

|x̂ − x̂k| ≤ ||x − xk|| ≤ ||x − xk||A ≤ ||Ax − Axk|| = ||b − Axk|| = ||rk||. (5.27)

So by choosing ||rk|| ≤ 10−11 as our termination criterion, we are guaranteed that

our approximate solution will have 10 digits of accuracy. It is customary to stop

when the norm of the residual falls below a specified value and often this value is

some small faction of the initial residue; that is, ||ri|| ≤ ε||r0|| [17].

Like the method of Steepest Descent, the CG method theoretically converges in

n steps. However due to floating-point error, this guarantee is void, making it

impossible to stop when the residual is zero. One method of reducing the error is

by recomputing the residual using (5.11a) every few iterations. The most efficient

method is by using a trick called preconditioning [4, Lecture 40].

5.6 P C G

To improve the convergence speed of the CG method, we need to make the

condition number for the matrix A smaller. Geometrically, we want to transform

the level surfaces of our quadratic form, which in general are ellipsoids (Figure

5.2(b)), to become as close as possible to spheres. By doing so it clusters the

eigenvalues closer together. Consider a symmetric positive definite matrix M that

is easy to invert with the property that M−1
≈ A−1; that is, a matrix M such that

κ(M−1A) ≈ 1. Then given M, we can indirectly solve Ax = b by applying the CG

method to the system

M−1Ax =M−1b. (5.28)

5. A Daunting Matrix 88

The problem that occurs is that M−1A is generally not symmetric nor positive

definite, even if M and A are. To combat this problem, recall that property (5.4)

implies there exists a matrix E such that M = EET. To transform the linear system

in (5.28) into a system that we can apply the CG method to, a matrix that has

similar eigenvalues to M−1A must be found. The claim below shows that the

matrix E−1AE−T is sufficient.

Claim 1. The matrices M−1A and E−1AE−T have the same eigenvalues.

Proof. Let v be an eigenvector of M−1A with corresponding eigenvalue λ. For

the matrices M−1A and E−1AE−T to have the same eigenvalues, ETv must be an

eigenvector of E−1AE−T with eigenvalue λ:

(E−1AE−T)(ETv) = E−1Av

= (ETE−T)E−1Av

= ETM−1Av (since M−1 = E−TE−1)

= λETv (since M−1Av = λv).

Therefore, the matrices M−1A and E−1AE−T have the same eigenvalues as

desired. �

Using Claim 1 the system Ax = b can be transformed into the problem

E−1AE−Tx̃ = E−1b, x̃ = ETx, (5.29)

which we solve first for x̃, then for x. Since E−1AE−T is a symmetric positive

definite matrix, we may use the CG method on it. The process of using CG to

solve (5.29) is called the Transformed Preconditioned Conjugate Gradient Method [17].

The algorithm below is just a reformulation of Algorithm 5.2.

5. A Daunting Matrix 89

Algorithm 5.3 (Transformed Preconditioned Conjugate Gradient Method)

Assumptions: A is a sparse symmetric positive definite matrix.

Input: The matrix A, a vector b, an initial guess to the location of the solution x̃0, a

factorization of M such that M = EET, a maximum tolerance ε, and an upper

bound on the number of iterations imax.

Output: An approximation to the location of the solution to Ax = b.

1 d̃0 = r̃0 = E−1b − E−1AE−Tx̃0

2 n = imax

3 for i = 0 to n

4 αi = 〈r̃i, r̃i〉/〈E−1AE−Td̃i, d̃i〉

5 x̃i+1 = x̃i + αid̃i

6 r̃i+1 = r̃i − αiE−1AE−Td̃i

7 i f ||ri+1|| ≤ ε then exit loop

8 βi+1 = 〈r̃i+1, r̃i+1〉/〈r̃i, r̃i〉

9 d̃i+1 = r̃i+1 + βi+1d̃i

10 end for

11 return x = E−Tx̃n

There is no wrong choice for the starting value for x̃0. If you have a rough

approximation for the value x, use it as the value for x̃0, otherwise let x̃0 = 0.

When the PCG method is used to solve a linear system, it will always converge.

The drawback of using Algorithm 5.3 is that E must be computed using some

type of factorization routine (Cholesky factorization or reverse Cuthill-McKee). By

making clever substitutions we are able to eliminate E. By letting r̃i = E−1ri and

d̃i = ETdi and using the identities x̃i = ETxi and E−TE−1 = M−1, we derive the

Untransformed Preconditioned Conjugate Gradient Method [17]:

Algorithm 5.4 (Untransformed Preconditioned Conjugate Gradient Method)

5. A Daunting Matrix 90

Assumptions: A is a sparse symmetric positive definite matrix.

Input: The matrix A, a vector b, an initial guess to the location of the solution x0, a

preconditioner M, a maximum tolerance ε, and an upper bound on the

number of iterations imax.

Output: An approximation to the location of the solution to Ax = b.

1 r0 = b − Ax0

2 d0 =M−1r0

3 n = imax

4 for i = 0 to n

5 αi = 〈M−1ri, ri〉/〈Adi,di〉

6 xi+1 = xi + αidi

7 ri+1 = ri − αiAdi

8 i f ||ri+1|| ≤ ε then exit loop

9 βi+1 = 〈M−1ri+1, ri+1〉/〈M−1ri, ri〉

10 di+1 =M−1ri+1 + βi+1di

11 end for

12 return xn

The effectiveness of a preconditioner M is determined by the condition number

of M−1A. The ideal matrix M will also have the property that the matrix-vector

product Mri is not too difficult to compute. The problem remains to find an

appropriate preconditioner that will make κ(M−1A) ≈ 1. The perfect choice

for a preconditioner is M = A which gives us κ(M−1A) = 1. Unfortunately, the

preconditioning step is solving the system Mx = b which has the same time

complexity as the original problem. If M = In, then nothing has been gained since

we are solving the original problem. Between these two extremes lie the useful

preconditioners. The simplest choice for a preconditioner is M = D where D is the

5. A Daunting Matrix 91

matrix of the diagonal entries of A. The act of applying D to the iterative method

is called diagonal scaling or Jacobi preconditioning [4]. The diagonal matrix is trivial

to invert, but often is not a good preconditioner.

A more efficient preconditioner uses incomplete Cholesky factorization [4].

Normal Cholesky factorization gives an lower-triangular matrix L such that

A = LTL. By computing the Cholesky factorization, one runs the risk of eliminating

zeros and making L not very sparse. The idea of incomplete Cholesky factorization

is that we compute a matrix L̂ that minimizes fill-in; that is, minimizes the amount

of nonzero entries created in the process of calculating L̂. One can do so by using

Cholesky-like methods with the restriction that the resulting matrix L̂ have the

same pattern of nonzero elements of A. An example of this would be using

Reverse Cuthill-McKee ordering [6]. Unfortunately, Cholesky preconditioning is

not always stable.

Figure 5.7 illustrates the results of preconditioning when applied to our

sample problem in (5.6). Comparing the results with Figure 5.2a, we can see some

improvement in the shape of the ellipses. The condition number for the sample

problem was originally 3.5, but by using diagonal and Cholesky preconditioning

the condition numbers were reduced to 2.78 and 1.24, respectively.

Let us once again consider the problem at hand. Earlier we found that

the condition number for our matrix A was 2 · 105. By using the diagonal

preconditioner D, the condition number κ(D−1A) reduces to approximately 4.45

[6]. The application of Corollary 5.3 using κ = 4.45 shows that k ≥ 28 iterations are

sufficient to get 10 digits of accuracy. The code in Appendix C shows sample runs

of the PCG method using the diagonal preconditioner.

5. A Daunting Matrix 92

-4 -2 0 2 4 6
-6

-4

-2

0

2

4

(a) Diagonal preconditioning.

-4 -2 0 2 4 6
-6

-4

-2

0

2

4

(b) Cholesky preconditioning.

Figure 5.7: Contours of the quadratic form of our sample problem after preconditioning.

A Mathematica Session

Due to the large memory constraints posed by the PCG method, my personal

computer was unable to calculate an approximation to x. Fortunately, Mathematica

has an efficient PCG solver built into LinearSolve. Using the definition of A and b

as shown in the session on page 64, we can calculate the (1, 1) entry to 50 digit

precision in only a few seconds:

diagonal � Table�A�i, i�, �i, n��;
prec � 50;

b � SetPrecision�b, prec � 5�;
x � LinearSolve�A, b, Method � 	Krylov, Method � ConjugateGradient,

Preconditioner �

�
���

#
������������������������
diagonal

&

�
���, Tolerance � 10�prec�1��;

N�x�1�, 50�

0.72507834626840116746868771925116096886918059447951

5. A Daunting Matrix 93

5.7 I A

Using the PCG method we are able to get 10000 digits of accuracy using 2903

iterations and 5.3 days of computing [6]. Like most algorithms in computational

mathematics, the PCG method does not provide a proof of correctness. We will be

using interval arithmetic to validate the calculated solution. Our general problem

is solving the linear system Ax = b. Assume we have a calculated vector x̂ and we

want to estimate the error ||x − x̂||. By using a residual based estimate, the error

can be enclosed using intervals. The reason is because both direct methods and

iterative methods such as the PCG method tend to produce small residuals. A

fairly simple estimate can be derived just from our problem statement:

||x − x̂|| = ||A−1 (b − Ax̂)︸ ︷︷ ︸
r

|| ≤ ||A−1
|| · ||r||. (5.30)

Using the fact that 1 ≤ λmin(An) ≤ 2 then

||A−1
n || = 1/λmin(An) ≤ 1

where || · || denotes the spectral norm of A [6]. Using the previous statement, we

simplify (5.30) to find:

||x − x̂|| ≤ ||A−1
n || · ||r|| ≤ ||r||.

Therefore, to validate the error we need only to calculate the inclusion of

||r|| = ||b − Anx̂|| using intervals; that is, x̂ is the midpoint of our interval enclosed

by ||b −Anx̂||. Using Mathematica’s built in interval arithmetic, one can find the

interval enclosure of the result on page 92 in only a few seconds:

5. A Daunting Matrix 94

A Mathematica Session

x�1� � Interval���1, 1�� Norm�b � A.Interval �� x� �� IntervalForm

0.7250783462684011674686877192511609688691805944795082162
96996

As a concluding note, it is interesting to mention that this SIAM problem is the

only one to be solved exactly. The LinBox team used a cluster of 182 processors

running in parallel for about 4 days to come up with an exact rational solution

that has 97,389 digits in both the numerator and denominator! However, in 2005

Zhendong Wan created an algorithm that substantially reduced the run time to

only 25 minutes [7].

CHAPTER 6
C

The SIAM 100-Digit challenge provides an extremely broad look into the

field of numerical analysis with topics like matrix computation, integration

strategies, partial differential equations, optimization, error control, interval

analysis, and high-precision arithmetic. With the help of Mathematica I have

successfully solved three of the ten SIAM problems. By making use of interval

analysis, the algorithms designed provided verifiably correct solutions without

the need for sensitivity analysis. I focused on solutions to these problems using

interval analysis specifically to understand what it brings to the world of scientific

computing. Interval analysis is a great tool for computational mathematics but

can not be used to solve every problem. Like the definitions of numerical analysis

introduced in Chapter 1, interval analysis has its share of ambiguous definitions.

Although I tried my best to introduce the subject of interval analysis to the

reader, there are many more topics to explore. Since interval arithmetic is just an

extension of real arithmetic, mathematical fields such as topology and analysis can

be used as tools in studying the realm of intervals.

With computer technology becoming more advanced, the problems of the past

like memory limitations and rounding error seem to be fading into extinction. On

95

6. Conclusion 96

the other hand, numerical analysis will persevere and continue its study of

algorithms in continuous mathematics. A logical step for computer scientists and

mathematicians in the future is to make the implementation of interval analysis in

hardware more efficient. After decades of study of floating-point arithmetic,

interval arithmetic has had relatively little exposure and can be improved upon

greatly. Interval analysis can also be improved at the software level as well. The

number of built in interval arithmetic routines in Mathematica are relatively sparse.

In the future, I would like to see Wolfram add more functionality.

Although I only solved three problems for the SIAM 100-Digit challenge, I

would like to solve the other seven problems. I hope to continue on to study

computational mathematics and by finishing the other problems it would

introduce me to new topics in numerical analysis. Through this Independent

Study, I have become a more efficient programmer. The three problems I looked at

challenged both my reasoning and programming skills and encouraged me to

excel as a researcher. The year long experience has prepared me for graduate

research and provides a great introduction to the world of scientific computing. In

the future I forsee myself studying interval analysis as a possible thesis topic.

APPENDIX A
C 3 C

This appendix lists the Mathematica code for Chapter 3.

97

Basic Initializations

Pretty Print IntervalForm from The SIAM 100 Digit Challenge Book:

DigitsAgreeCount@a_, b_D := Hprec = Ceiling@Min@Precision ê@ 8a, b<D;
88ad, ae<, 8bd, be<< = RealDigits@#, 10, precD & ê@ 8a, b<;
If@ae ≠ be fi a b ≤ 0, Return@0DD; If@ad m bd, Return@Length@adDD;
88com<< = Position@MapThread@Equal, 8ad, bd<D, False, 1, 1D − 1; comL;

DigitsAgreeCount@Interval@8a_, b_<DD := DigitsAgreeCount@a, bD;

IntervalForm@Interval@8a_, b_<DD :=

HIf@Hcom = DigitsAgreeCount@a, bDL m 0, Return@Interval@8a, b<DD;
start = Sign@aD N@FromDigits@8adPRange@comT, 1<, comD;
8low, up< = SequenceForm @@ Take@#, 8com + 1, prec<D & ê@ 8ad, bd<;
If@ae m 0, start ê= 10; ae++D; SequenceForm@

DisplayForm@SubsuperscriptBox@NumberForm@start, low, upD, If@ae ≠ 1,
Sequence @@ 8" × ", DisplayForm@SuperscriptBox@10, ae − 1D<, ""DDL

The SIAM book interval solution (not using Newton / Krawczyk)

iMin@8Interval@8a_, b_<D, Interval@8c_, d_<D<D :=

Interval@8Min@a, cD, Min@b, dD<D;
iMin@8<D := ∞;
RealToInterval@r_, d_D := Interval@r + 8−1, 1< dD;
diam@Interval@8a_, b_<DD := b − a;
diam@8i__Interval<D := Max@diam ê@ 8i<D;
h@8a_, b_<D := 9 88b2 − a2, −2 a b<, 8−2 a b, a2 − b2<<;

ReliableTrajectory::usage =

"ReliableTrajectory@p, v, targettime, HoptsLD gives a set of 8time,
position< intervals that give the reflection points and the times
they are there. The last position is an interval of diameter
less than 10^−ag, where ag is the AccuracyGoal setting.";

StartIntervalPrecision::usage =

"StartIntervalPrecision is an option to ReliableTrajectory that
sets the starting size of the intervals. A setting of automatic
means that the accuracy goal is used for the initial size.";

IntervalPrecisionStep::usage =

"IntervalPrecisionStep is an option to ReliableTrajectory
that sets the number of powers of 10 by which
the interval size is decreased after a failure.";

ShowSize::usage = "ShowSize is an option to ReliableTrajectory that asks
that the initial condition interval size that works be printed.";

 Appendix A 98

Options@ReliableTrajectoryD := 8StartIntervalPrecision → Automatic,
AccuracyGoal → 12, IntervalPrecisionStep → 1, ShowSize → False<;

ReliableTrajectory@p_, v_, targettime_, opts___RuleD :=

Module@8lastpoint = Interval@8−∞, ∞<D, stint, ips,
trQ, pint, intsize, t, resttime, pathdata, S, T<,
8ag, stint, ips, trQ< = 8AccuracyGoal, StartIntervalPrecision,

IntervalPrecisionStep, ShowSize< ê.
8opts< ê. Options@ReliableTrajectoryD;

If@stint === Automatic, stint = agD;
intsize = stint; wp = Max@17, 2 + intsizeD;
While@diam@lastpointD > 10−ag ,

pint = N@HRealToInterval@#, 10−intsizeD &L ê@ p, wpD;
vint = N@HRealToInterval@#, 10−intsizeD &L ê@ v, wpD;
pathdata = 8N@pint, wpD<;
resttime = Interval@8targettime, targettime<D;

While@resttime > 0, m = Round@pint + 2ê3 vintD;
S = t ê. HSolve@Hpint + t vint − mL.Hpint + t vint − mL m 1ê9, tDL;
If@FreeQ@S, Power@Interval@8_ ?Negative, _ ?Positive<D, _DD,

T = iMin@Cases@S, _ ?PositiveDD, Break@DD;
Which@

T ≤ resttime,
pint += T vint; vint = h@pint − mD.vint; resttime −= T,

T > resttime && resttime ≥ 2ê3, pint += 2ê3 vint; resttime −= 2ê3,
T > resttime && resttime < 2ê3, pint += resttime vint; resttime = 0,
True, Break@DD;

AppendTo@pathdata, pintD;
If@Precision @ 8resttime, pint, vint, T<D < ag, Break@DDD;

intsize += ips; wp = Max@17, intsize + 2D;
lastpoint = pint + Table@

RealToInterval@−Max@Abs@resttimeDD, Max@Abs@resttimeDDD, 82<DD;
If@trQ, Print@StringForm@"Initial condition interval radius is 10−``.",

intsizeDDD;
pathdataD;

Estimating the Photon's Path

If we consider the lattice of integer points then take unit squares centered at each lattice point, then these
squares divide each photon ray into segments. For example:

 Appendix A 99

<< Graphics`Arrow`
H∗ 9 mirrors in @−0.5,2.5D×@−0.5,2.5D ∗L
mirrors = Table@Circle@8i, j<, 1 ê3D, 8i, 0, 2<, 8j, 0, 2<D;
H∗ 9 centers for each mirror ∗L
centers = Table@Point@8i, j<D, 8i, 0, 2<, 8j, 0, 2<D;
H∗ Starting point for our example ray and a

big circular dot to make it visible with a label ∗L
p = 80.35, −0.3<;
point = Circle@p, 0.03D;
plabel = Text@"P", p − 8.1, .1<, TextStyle → 8FontSize → 15<D;
H∗ A simple line to illustrate the path of our ray y =

1.1 x − 0.685. Each segment has a different Dashing ∗L
line1 = Plot@2.6 x − 1.21, 8x, 0.365, 0.5<, Axes → False,

AxesOrigin → 8−1ê 2, −1ê2<, PlotRange → 88−.6, 2.6<, 8−.6, 2.8<<,
AspectRatio → Automatic, DisplayFunction → IdentityD;

line2 = Plot@2.6 x − 1.21, 8x, 0.5, 0.6576923076923077`<, Axes → False,
AxesOrigin → 8−1ê 2, −1ê2<, PlotRange → 88−.6, 2.6<, 8−.6, 2.8<<,
PlotStyle → 8Dashing@80.01, 0.015<D<,
AspectRatio → Automatic, DisplayFunction → IdentityD;

line3 = Plot@2.6 x − 1.21, 8x, 0.6576923076923077`, 1.0423076923076922`<,
Axes → False, AxesOrigin → 8−1ê2, −1ê2<,
PlotRange → 88−.6, 2.6<, 8−.6, 2.8<<,
AspectRatio → Automatic, DisplayFunction → IdentityD;

line4 = Plot@2.6 x − 1.21, 8x, 1.0423076923076922`, 1.426923076923077`<,
Axes → False, AxesOrigin → 8−1ê2, −1ê2<, PlotRange →

88−.6, 2.6<, 8−.6, 2.8<<, PlotStyle → 8Dashing@80.01, 0.015<D<,
AspectRatio → Automatic, DisplayFunction → IdentityD;

H∗ An arrow to finish it off ∗L
arrow = Arrow@81.426923076923077`, 2.5<,

81.5, 2.69<, HeadWidth → 0.4, HeadLength → 0.04D;
H∗ Display all the items above in a grid with some extra formatting ∗L
Show@Graphics@8mirrors, centers, point, plabel, arrow<,

AspectRatio → Automatic, Axes → True, AxesOrigin → 8−1ê2, −1ê2<,
PlotRange → 88−.5, 2.65<, 8−.5, 2.65<<,
Ticks → 8Range@0, 2.5, .5D, Range@0, 2.5, .5D<,
GridLines → 880.5, 1.5, 2.5<, 80.5, 1.5, 2.5<<D, line1, line2, line3, line4D

We needed to solve for when our line reaches the top part of the box:

Table@Solve@y m 2.6 x − 1.21, xD, 8y, 0.5, 2.5, 1<D

888x → 0.657692<<, 88x → 1.04231<<, 88x → 1.42692<<<

If a ray intersects a mirror inside a square it must have length at least è!!!2 - 2ÅÅÅÅ3 :

 Appendix A 100

pp = 9I−1ê3
è!!!!

2 ë 2M, I1ê3
è!!!!

2 ë 2M=;

ShowAGraphicsA9Circle@80, 0<, 1ê3D, PointSize@0.03D, Point@80, 0<D,

PointAè!!!!
2 ë 2 8−1, 1<ê3E, Line@880, 0<, pp, 8−.5, .5<<D,

Text@"1ê3", 8 −.05, .11<, 80, −1<D,

TextA"
è!!!!

2
cccccccccc

2
−

1
cccc
3

", 8−.28, .42<, 80, 0<E,

TextA"
è!!!!

2 −
2
cccc
3

", 8.3, −.3<, 80, 0<E,

Line@88−.5, −.5<, 8.5, −.5<, 8.5, .5<, 8−.5, .5<, 8−.5, −.5<<D,

LineA99−.5,
1
cccc
6
I−3 + 2

è!!!!
2 M=, 9 1

cccc
6
I3 − 2

è!!!!
2 M, .5==E,

LineA99.5,
1
cccc
6
I3 − 2

è!!!!
2 M=, 9 1

cccc
6
I−3 + 2

è!!!!
2 M, − .5==E,

PointSize@.03D=E, AspectRatio → Automatic,

TextStyle → 8FontFamily → "Times", FontSize → 12<E

What would be a better lower bound than 2 ê 3 since 2 ê 3 is not finitely representable in binary?

BaseForm@2ê 3 êê N, 2D

0.101010101010101010112

Well we need something less than 0.747547

Sqrt@2D − 2 ê3 êê N

0.747547

Maybe 11/16?

11ê 16 êê N
BaseForm@%, 2D

0.6875

0.10112

ü Algorithm 3.1

This does not use interval arithmetic so we can only get a fixed amount of digits depending on our
starting precision:

 Appendix A 101

H∗ Initialize our transformation matrix. Given the photons position p,
and its velocity vector v, we can determine its new direction ∗L

H@8a_, b_<D := 9
i
k
jjj b2 − a2 −2 a b

−2 a b a2 − b2
y
{
zzz;

H∗ We begin with n−digit precision ∗L
startPrec = 43;
H∗ Our initial point is p. We use N to use n−digit precision ∗L

p = NA9 1
cccc
2

,
1

ccccccc
10

=, startPrecE;

H∗ Our initial velocity is v. We don' t use n−digit precision here
since our error is dependent on the position of the photon p ∗L

v =

81,
0<;

Begin Algorithm 3.1:

H∗ STEP 1 ∗L
H∗ The amount of time remaining is timeRem ∗L
timeRem = 10;
path = 8p<;

 Appendix A 102

H∗ STEP 2 ∗L
H∗ While there is still time left ∗L
WhileAtimeRem > 0,

H∗ Assume for this iteration that m is the
midpoint of the mirror the photons path intersects with ∗L

m = RoundAp +
2
cccc
3

 vE;

H∗ Find the smallest positive root. If s ≠

∞ then s is equal to the time it takes for the photon
to reach the intersection point with the mirror,

otherwise the photon does not intersect the mirror ∗L

s = MinACasesAt ê. SolveAHp + t v − mL.Hp + t v − mL m
1
cccc
9

, tE,

_ ?PositiveEE;

H∗ If the time it takes to reach the next intersection is less
than the time remaining then that means there is an intersection ∗L

IfAs < timeRem,

H∗ p is now set to be the point at which it intersects with
the mirror and v is determined by our transformation matrix H ∗L

p += s v;
v = H@p − mD.v,

H∗ Else there was no intersection,
so there are two things that may have

happened: H1L The photon stops in mid−flight at timeRem =

10. In this case we let s = timeRem and thus p has reached
its final destination, or H2L the photon has sufficient time,

but the mirror we chose initially as determined by m was

not correct. In this case we let s be 2cccc
3

since we

will choose the next mirror in the photon' s path ∗L

s = MinAtimeRem,
2
cccc
3
E;

p += s v
E;

H∗ STEP 3 ∗L
H∗ Reduce timeRem by s ∗L
timeRem −= s;
H∗ Append p to path ∗L
path = Append@path, pD;

E;

 Appendix A 103

Print@"The final position of our photon = ", Last@pathDD;
Print@"Distance from p to the origin = ", answer = Norm@pDD;
Print@"Number of digits Mathematica claims to have correct = ",

Precision@answerDD

The final position of our photon = 8−0.73629269861, −0.66964269636<

Distance from p to the origin = 0.9952629194

Number of digits Mathematica claims to have correct = 10.9179

 Appendix A 104

ü Software Precision Trajectories

ü Paths for Various Precisions

path29 = 880.5`29., 0.1`29.<,
80.68202026619435145028245947134049832193`27.979591477348777,

0.1`29.<,
80.13535359952768478361579280473071378559`26.593088199488765,

0.48157568056677825966104863439140201369`27.7255557365983<,
8−0.41131306713898188305087386187907075075`26.822193737162966,

0.86315136113355651932209726878280402738`27.680351667890253<,
8−0.66949971878499157782762681272154851253`25.87145755353705,

1.04336675256358795162454375904746651582`26.24154649457202<,
8−0.12387346586949235788169482574561257965`22.862396033460378,

1.69053841019507635342824262818397345497`23.92755089295085<,
8−0.14781568220083659098114755501070878814`20.89905486127738,

1.29876685761076711458137499603183990807`20.650672926520834<,
8−0.7979418211586858008539108276`18.198970265781032,

1.7348894504655791748450567256`18.696147777769255<,
8−0.5866082271476562379076535663`17.186047877000277,

1.1026058459914272641589943942`17.474737144758677<,
8−0.2790266153436722298854081451`15.221639104612777,

0.1823602452316992471366168797`14.576251214372071<,
8−0.6994768047773788031178984162`13.539836232404737,

0.1442113734914740325451806037`13.61049218887457<,
8−0.1580680753813636717648539569`11.054808921583602,

0.7065283750405456268893783853`11.705272862674462<,
8−0.2747642020277137981128563567`9.626703639138345,

0.1887213405929091626`8.871445995552044<,
8−0.6762579184348799177`7.690148658284796,

−0.0793862439909723592`6.917623467769003<,
8−0.2751116434597207771`6.1001956987470605,

−0.8117855086769284249`6.44055446025527<,
8−0.785422480423465103`4.757515311600611,

−0.7449164860285702181`5.338176139692664<,
8−0.9170732123424068868`4.028680617531947,

−0.3228533086347782651`3.310451401049224<,
8−0.8169471476532205183`3.080375344443701,

−0.8155668962180758346`2.9295005552854834<<;

path43 = 880.5`43., 0.1`43.<,
80.682020266194351450282459471325591153248458858249837209113`41.97959g

147734878, 0.1`43.<,
80.135353599527684783615792804658924486581792191583243526742`40.59308g

819948877,
0.481575680566778259661048634409290616101849370100195349064`41.72555g

 Appendix A 105

573659831<,
8−0.41131306713898188305087386200774218008487447508335015563`40.82219g

3737162955,
0.863151361133556519322097268818581232203698740200390698129`41.68035g

1667890264<,
8−0.669499718784991577827626812709919452171917799292233169144`39.8714g

5755353705,
1.043366752563587951624543758975010137972570289310255342443`40.24154g

649457203<,
8−0.123873465869492357881694825306121854482473387528`36.86239603346037

,
1.690538410195076353428242628005783837769430685068`37.927550892950855
<,
8−0.147815682200836590981147553202989949197484143534`34.89905486127738

,
1.298766857610767114581374996928560604119684614547`34.65067292652083<
,
8−0.797941821158685800853910815999514436627142312429`32.1989702657810g

35,
1.734889450465579174845056734468711141824661872405`32.69614777776926<
,
8−0.586608227147656237907653489451668390415071410423`31.18604787700028

,
1.102605845991427264158994424807713237365072532152`31.474737144758684
<,
8−0.279026615343672229910973206412386627503133126394`29.22163910461279

,
0.182360245231699247213104912362126159901061734686`28.576251214372075
<, 8−0.69947680477737880314544219323883194645`26.33653723818892,
0.14421137349147403274876546718094373641`26.668386097543287<,
8−0.15806807538136367300869176623168809287`23.602322253496816,

0.70652837504054562748749188171516074849`24.24622863451234<,
8−0.27476420202771383991874165409034663121`21.38748966446956,

0.18872134059290900684454755601218295768`20.58578036298622<,
8−0.6762579184348800163896277542`19.08105055799066,

−0.07938624399097308832405159528104081428`18.317791381376484<,
8−0.2751116434597238627955311962`16.37038286272229,

−0.8117855086769329352189491774`16.587479435211847<,
8−0.7854224801378137367316209284`14.510480395232836,

−0.7449164860660254846081429798`15.250339536395382<,
8−0.9170732114180663314763887118`13.441226943343025,

−0.3228533085576147333449764983`12.56991198952313<,
8−0.8387527301133577109110551425`11.948397813233655,

−0.7082630824437615764360739126`11.262054886165851<,
8−0.7362926986096183080809550993`11.039048997422958,

−0.6696426963635713771620597167`10.917922704870435<<;

ü Trajectory Plot

 Appendix A 106

It may be hard to see the difference between a software precision of 43 digits versus software precision of
29 digits (43 digits gives us 10 digits of accuracy). Here we will use t = 10:

mirrors = Table@Disk@8i, j<, 1ê3D, 8i, −1, 2<, 8j, −1, 2<D;
mirroroutline = Table@Circle@8i, j<, 1 ê3D, 8i, −1, 2<, 8j, −1, 2<D;

startPoint = CircleA9 1
cccc
2

,
1

ccccccc
10

=, 0.015E;

p43 = Graphics@88GrayLevel@0.75D, mirrors<, mirroroutline, startPoint,
Map@Line, Partition@path43, 2, 1DD, Disk@Last@path43D, 0.015D<,

AspectRatio → Automatic, Axes → True, AxesOrigin → 8−1, −1<,
PlotRange → 88−1, 2<, 8−1, 2<<,
Ticks → 8Range@−1, 2.5, .5D, Range@−1, 2.5, .5D<D;

p29 = Graphics@88GrayLevel@0.75D, mirrors<, mirroroutline, startPoint,
Map@Line, Partition@path29, 2, 1DD, Disk@Last@path29D, 0.015D<,

AspectRatio → Automatic, Axes → True, AxesOrigin → 8−1, −1<,
PlotRange → 88−1, 2<, 8−1, 2<<,
Ticks → 8Range@−1, 2.5, .5D, Range@−1, 2.5, .5D<D;

Show@GraphicsArray@8p43, p29<DD;

It might be easier if we zoom in and view what happens near the end of the photons path:

mirrors = Table@Disk@8i, j<, 1ê3D, 8i, −1, 0<, 8j, −1, 0<D;
mirroroutline = Table@Circle@8i, j<, 1 ê3D, 8i, −1, 0<, 8j, −1, 0<D;

startPoint = CircleA9 1
cccc
2

,
1

ccccccc
10

=, 0.015E;

p43 = Graphics@88GrayLevel@0.75D, mirrors<, mirroroutline, startPoint,
Map@Line, Partition@path43, 2, 1DD, Disk@Last@path43D, 0.015D<,

AspectRatio → Automatic, Axes → True, AxesOrigin → 8−1, −1<,
PlotRange → 88−1, 0<, 8−1, 0<<,
Ticks → 8Range@−1, 2.5, .5D, Range@−1, 2.5, .5D<D;

p29 = Graphics@88GrayLevel@0.75D, mirrors<, mirroroutline, startPoint,
Map@Line, Partition@path29, 2, 1DD, Disk@Last@path29D, 0.015D<,

AspectRatio → Automatic, Axes → True, AxesOrigin → 8−1, −1<,
PlotRange → 88−1, 0<, 8−1, 0<<,
Ticks → 8Range@−1, 0, .5D, Range@−1, 0, .5D<D;

Show@GraphicsArray@8p43, p29<DD;

ü Results Using Fixed Precision With Algorithm 3.1

Here is the code from Algorithm 3.1 in the form of a function so I can just put in the fixed precision.

 Appendix A 107

calcFixedPrec@fixedPrec_, time_D := ModuleA8H, p, v, timeRem, m, s, path<,

H@8a_, b_<D := 9 i
k
jjj b2 − a2 −2 a b

−2 a b a2 − b2
y
{
zzz;

p = NA9 1
cccc
2

,
1

ccccccc
10

=, fixedPrecE;

v = 81, 0<;
timeRem = time;
path = 8p<;
WhileAtimeRem > 0,

m = RoundAp +
2
cccc
3

 vE;

s =

MinACasesAt ê. SolveAHp + t v − mL.Hp + t v − mL m
1
cccc
9

, tE, _ ?PositiveEE;

IfAs < timeRem,

p += s v; v = H@p − mD.v,

s = MinAtimeRem,
2
cccc
3
E; p += s v

E;

timeRem −= s;
path = Append@path, pD;

E;

Norm@pD
Print@"The final position of our photon = ", Last@pathDD;
Print@"Distance from p to the origin = ", answer = Norm@pDD;
Print@"Number of digits Mathematica claims to have correct = ",

Precision@answerDD
E;

Testing that it works:

calcFixedPrec@56, 10D

The final position of our photon =

8−0.736292698609618310776, −0.669642696363571375194<

Distance from p to the origin = 0.995262919443354160890

Number of digits Mathematica claims to have correct = 21.5611

We will display a table of the results from 29 to 154 by steps of 5 to illustrate the number of digits
Mathematica claims to have correct:

 Appendix A 108

DisplayForm@StyleBox@GridBox@Prepend@Table@
8prec, 7

answer = calcFixedPrec@prec, 10D ,
Precision@answerD<, 8prec, 29, 154, 5<D,

8"Precision", "Computed Distance", "Number of Correct Digits"<D,
GridFrame → 1, ColumnAlignments → 8Center, Left, Right<,
RowLines → 81, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 0, 1<D, FontFamily → Times, FontSize → 9DD

Reliable Reflections

ü Algorithm 3.2

Supporting functions for Algorithm 3.2

H∗ Mathematica does not have an interval version of Min ∗L
iMin@8Interval@8a_, b_<D, Interval@8c_, d_<D<D :=

Interval@8Min@a, cD, Min@b, dD<D;
H∗ Just in case our interval is empty ∗L
iMin@8<D := ∞;
H∗ Convert an Interval to a Real ∗L

IntervalToReal@Interval@8a_, b_<DD :=
a + b
cccccccccccc

2
;

H∗ In case IntervalToReal is passed a Real number we have this case ∗L
IntervalToReal@a_D := a;
H∗ Convert a Real number r to an Interval with diameter d ∗L
RealToInterval@r_, d_D := r + Interval@8−1, 1< D d;
H∗ The diameter or width of an Interval ∗L
diam@Interval@8a_, b_<DD := b − a;
H∗ Takes the diameter over a list of Intervals

and returns the one with the largest diameter ∗L
diam@8i__Interval<D := Max@diam ê@ 8i<D;
H∗ Once again we defined our transformation matrix ∗L

H@8a_, b_<D := 9 i
k
jjj b2 − a2 −2 a b

−2 a b a2 − b2
y
{
zzz;

This algorithm uses interval arithmetic. Each input will therefore be a small interval around the initial
value. Begin Algorithm 3.2:

 Appendix A 109

H∗ STEP 1 ∗L
H∗ The maximum amount of time the photon will be reflecting ∗L
tMax = 10;
H∗ The amount of time remaining begins as a degenerate interval ∗L
tRem = Interval@8tMax, tMax<D;
H∗ Our starting point ∗L

p = 9 1
cccc
2

,
1

ccccccc
10

=;

H∗ Our starting velocity ∗L
v = 81, 0<;
H∗ Our accuracy goal ∗L
accuracyGoal = 100;
ε = 10−accuracyGoal;
H∗ If we know ahead of time what interval

radius allows us to get the required accuracy goal,
then sIntervalPrecision eliminates the trial and error of

increasing the working precision. We will assume that we do know
the interval radius. In the algorithm this is denoted by s ∗L

sIntervalPrecision = 127;
H∗ Our error will eventually decrease,

so we can just set it to infinity ∗L
error = ∞;
H∗ Our working precision, wp ∗L
workingPrecision = sIntervalPrecision + 2;

H∗ STEP 2 ∗L
H∗ While we have not reached our

required accuracy goal do the following ∗L
WhileAerror > ε,

H∗ Change our point p into an interval
Hif necessaryL with workingPrecision−digit accuracy ∗L

P = N@RealToInterval@p, 10−sIntervalPrecisionD, workingPrecisionD;
H∗ Similarly for our velocity vector ∗L
V = N@RealToInterval@v, 10−sIntervalPrecisionD, workingPrecisionD;
H∗ A list of the intersection points for our photon,

these will be changed from intervals to real numbers later ∗L
iPath = 8P<;
H∗ This is similar to Algorithm 2.1 ∗L
WhileAtRem > 0,

H∗ Assume the mirror we hit has midpoint M HRound might cause
difficulty in version of Mathematica less than 5.0L ∗L

M = RoundAP +
2
cccc
3

 VE;

H∗ Find the time S,
at which our photon intersects the mirror. This is a

set of interval solutions to the following quadratic ∗L

S = t ê. i
k
jjSolveAHP + t V − ML.HP + t V − ML m

1
cccc
9

, tEy
{
zz;

 Appendix A 110

H∗ If S DOES NOT contain an expression of the form
è!!!!!!!!!!!!!!@a,bD with a < 0 < b then do the first statement. Note
that FreeQ returns True if NO SUCH expr matches form ∗L

IfAFreeQ@S, Power@Interval@8_ ?Negative, _ ?Positive<D, _DD,

H∗ Let T be those solutions in S of the form @a,bD with a ≥

0. If T is empty then let T=iMin@TD=@∞,∞D
Hthis is carried oiut by the functional definition of iMinL ∗L
T = iMin@Cases@S, _ ?PositiveDD,

H∗ Else there is an expression of the form
è!!!!!!!!!!!!!!@a,bD with a <

0 < b so exit the inner While loop ∗L
Break@D
E;

H∗ Test values of T and timeRem and apply the appropriate case ∗L
Which@

H∗ The photon intersects this mirror
so update its position and velocity and reduce tRem ∗L

T ≤ tRem,
P += T V;
V = H@P − MD.V;
tRem −= T,

H∗ The mirror in question does not intersect
with the photon so try the next one and reduce tRem∗L

T > tRem && tRem ≥ 2ê3,
P += 2 V ê3;
tRem −= 2ê3,

H∗ The time has run out and the photon stops moving
so update photons final position and set tRem = 0 ∗L

T > tRem && tRem < 2ê3,
P += tRem V;
tRem = 0,

H∗ Incomparable intervals so exit inner While loop ∗L
True,

Break@D
D;
H∗ Add P to the iPath list ∗L
AppendTo@iPath, PD;
H∗ If any of tRem, P, V,

or T are less than accuracyGoal then exit the inner While
loop and thus increase our working precision. This shouldn' t
happen though if we choose sIntervalPrecision correctly! ∗L

If@Precision @ 8tRem, P, V, T<D < ε,
Break@D

D;
E;

H∗ We didn' t reach our accuracyGoal so we need
to change our working precision and set our error ∗L

++sIntervalPrecision;
workingPrecision = sIntervalPrecision + 2;

 Appendix A 111

error =

diam@P + Table@RealToInterval@−Max@Abs@tRemDD, Max@Abs@tRemDDD, 82<DD;
E;

H∗ STEP 3 ∗L
H∗ Return iPath ∗L
H∗ This solution uses interval arithmetic,

so each element of iPath represents a point x =

Hx1,x2L of the path with x1 and x2 both being intervals. We
use IntervalForm to show the Interval in pretty print ∗L

Norm@Last@iPathDD êê IntervalForm

0.9952629194433541608903118094267216210294669227341543498032088580729861g
7962283063209917498189574

950

Let's say we want to graph iPath to see whether it corresponds to the path found in Algorithm 2.1. First
we must convert every interval in iPath to a real number. We use the rule x_Interval to check to retrieve,
the Intervals from iPath, then we use IntervalToReal to convert it. We use 16 digit precision.

path = N@iPath ê. x_Interval � IntervalToReal@xD, 16D;

The standard plotting routine.

mirrors = Table@Disk@8i, j<, 1ê3D, 8i, −1, 2<, 8j, −1, 2<D;
mirroroutline = Table@Circle@8i, j<, 1 ê3D, 8i, −1, 2<, 8j, −1, 2<D;

startPoint = CircleA9 1
cccc
2

,
1

ccccccc
10

=, 0.015E;

Show@Graphics@88GrayLevel@0.75D, mirrors<, mirroroutline, startPoint,
Map@Line, Partition@path, 2, 1DD, Disk@Last@pathD, 0.015D<,

AspectRatio → Automatic, Axes → True, AxesOrigin → 8−1, −1<,
PlotRange → 88−1, 2<, 8−1, 2<<,
Ticks → 8Range@−1, 2.5, .5D, Range@−1, 2.5, .5D<DD

ü Time Complexity Tests for Both Algorithms

The noninterval version (Algorithm 3.1):

 Appendix A 112

H@8a_, b_<D := 9 i
k
jjj b2 − a2 −2 a b

−2 a b a2 − b2
y
{
zzz;

nonInterval@reqPrecision_D := Module@
8p, v, tRem, s, m<,
p = N@81ê 2, 1 ê10<, reqPrecision + 40D;
v = 81, 0<;
tRem = 10;
While@tRem > 0,

m = Round@p + 2 vê 3D;
s =

Min@Cases@t ê. Solve@Hp + t v − mL.Hp + t v − mL m 1ê9, tD, _ ?PositiveDD;
If@s < tRem,

p += s v;
v = H@p − mD.v,

H∗ Else ∗L
s = Min@tRem, 2 ê3D;
p += s v

D;
tRem −= s
D;
Norm@pD
D;

timedata = Table@8i,
Developer`ClearCache@D;
Timing@8i, nonInterval@iD<DP1, 1T<, 8i, 500, 30000, 500<D;

 Appendix A 113

ü Cached Data

timedataNonInterval =

88500, 0.125`<, 81000, 0.36000000000000004`<, 81500, 0.703`<,
82000, 1.0779999999999998`<, 82500, 1.6090000000000004`<,
83000, 2.2189999999999994`<, 83500, 2.578000000000001`<,
84000, 3.405999999999999`<, 84500, 4.110000000000001`<,
85000, 5.172000000000001`<, 85500, 5.780999999999999`<,
86000, 6.530999999999999`<, 86500, 7.765999999999998`<,
87000, 8.484000000000002`<, 87500, 10.735`<, 88000, 12.515`<,
88500, 13.406000000000006`<, 89000, 14.281999999999996`<,
89500, 16.265`<, 810000, 18.250000000000014`<,
810500, 20.51599999999999`<, 811000, 20.811999999999983`<,
811500, 23.844000000000023`<, 812000, 24.562999999999988`<,
812500, 26.171999999999997`<, 813000, 29.187000000000012`<,
813500, 30.312999999999988`<, 814000, 32.139999999999986`<,
814500, 34.422000000000025`<, 815000, 34.422000000000025`<,
815500, 36.061999999999955`<, 816000, 38.922000000000025`<,
816500, 38.45300000000003`<, 817000, 41.95399999999995`<,
817500, 43.389999999999986`<, 818000, 43.96900000000005`<,
818500, 48.34399999999994`<, 819000, 48.593000000000075`<,
819500, 53.375`<, 820000, 56.047000000000025`<,
820500, 55.702999999999975`<, 821000, 61.235000000000014`<,
821500, 62.46899999999994`<, 822000, 64.15599999999995`<,
822500, 68.81200000000013`<, 823000, 69.17200000000003`<,
823500, 68.54700000000003`<, 824000, 74.9219999999998`<,
824500, 74.25`<, 825000, 75.04700000000003`<,
825500, 76.82799999999997`<, 826000, 80.73400000000015`<,
826500, 86.51600000000008`<, 827000, 89.5`<,
827500, 95.95299999999997`<, 828000, 96.18799999999987`<,
828500, 99.5619999999999`<, 829000, 99.09400000000005`<,
829500, 101.89000000000033`<, 830000, 106.125`<<;

 Appendix A 114

timedataInterval =

88500, 0.43799999999999994`<, 81000, 0.5620000000000003`<,
81500, 0.7809999999999997`<, 82000, 1.0630000000000002`<,
82500, 1.4059999999999997`<, 83000, 1.766`<, 83500, 2.125000000000001`<,
84000, 2.484`<, 84500, 2.937999999999999`<, 85000, 3.3590000000000018`<,
85500, 3.75`<, 86000, 4.422000000000001`<, 86500, 4.936999999999998`<,
87000, 5.5`<, 87500, 5.938000000000002`<, 88000, 6.452999999999996`<,
88500, 7.109000000000002`<, 89000, 7.703000000000003`<,
89500, 8.312999999999995`<, 810000, 8.984000000000009`<, 810500, 9.61`<,
811000, 10.09299999999999`<, 811500, 11.03200000000001`<,
812000, 11.780999999999992`<, 812500, 12.546999999999997`<,
813000, 13.515000000000015`<, 813500, 14.062999999999988`<,
814000, 15.`<, 814500, 15.51600000000002`<,
815000, 16.030999999999977`<, 815500, 15.469000000000023`<,
816000, 16.155999999999977`<, 816500, 16.656000000000034`<,
817000, 17.78099999999995`<, 817500, 18.5`<,
818000, 19.047000000000025`<, 818500, 20.360000000000014`<,
819000, 20.920999999999992`<, 819500, 21.610000000000014`<,
820000, 22.562000000000012`<, 820500, 23.468999999999994`<,
821000, 24.23399999999998`<, 821500, 25.125`<, 822000, 25.5`<,
822500, 26.906999999999982`<, 823000, 27.703000000000088`<,
823500, 28.515999999999963`<, 824000, 29.390999999999963`<,
824500, 29.812000000000012`<, 825000, 30.812000000000012`<,
825500, 32.125`<, 826000, 32.82800000000009`<,
826500, 33.81299999999999`<, 827000, 34.28099999999995`<,
827500, 35.84400000000005`<, 828000, 37.202999999999975`<,
828500, 37.73400000000004`<, 829000, 38.5`<,
829500, 39.73400000000004`<, 830000, 40.28200000000004`<<;

ü The Plots

We may generate a plot of the times needed by the non-interval algorithm to get d digits of the answer
using the assumption that it takes d + 40 digits of working precision to get d digits of the answer.

ListPlot@timedataNonInterval,
Ticks → 8Range@10000, 30000, 10000D, Range@5, 110, 10D<,
AxesLabel −> 8None, DisplayForm@

StyleBox@"CPU time @secD", FontFamily → "Times", FontSize → 9DD<,
PlotJoined → True, PlotStyle → Thickness@0.0008D, Epilog →

8PointSize@.01D, Point ê@ timedata, Text@"Digits", 830000, .2<,
81, −1<, TextStyle → 8FontFamily → "Times", FontSize → 9<D<,

TextStyle → 8FontFamily → "Times", FontSize → 7<D;

 Appendix A 115

ListPlot@timedataInterval,
Ticks → 8Range@10000, 30000, 10000D, Range@5, 45, 5D<,
AxesLabel −> 8None, DisplayForm@

StyleBox@"CPU time @secD", FontFamily → "Times", FontSize → 9DD<,
PlotJoined → True, PlotStyle → Thickness@0.0008D,
Epilog → 8PointSize@.01D, Point ê@ timedataInterval,

Text@"Digits", 830000, .2<, 81, −1<,
TextStyle → 8FontFamily → "Times", FontSize → 9<D<,

TextStyle → 8FontFamily → "Times", FontSize → 7<D;

If we really wanted to, we can see what our photon's path looks like after 2000 time steps

ipath2000 = ReliableTrajectory@81ê2, 1 ê10<, 81, 0<,
2000, AccuracyGoal → 12, StartIntervalPrecision → 5459,
IntervalPrecisionStep → 1, ShowSize → FalseD;

path = N@ ipath2000 ê. x_Interval � IntervalToReal@xD, 16D;

Show@Graphics@8Line@pathD, Point@Last@pathDD<D, Frame → True,
FrameTicks → 8Range@0, 60, 20D, Range@0, 40, 20D, None, None<,
AspectRatio → AutomaticD;

 Appendix A 116

APPENDIX B
C 4 C

This appendix lists the Mathematica code for Chapter 4.

117

Basic Initializations

Takes two arguments x and y and its compiled version :

f@x_, y_D := ÆSin@50 xD + Sin@60 ÆyD +

Sin@70 Sin@xDD + Sin@Sin@80 yDD − Sin@10 Hx + yLD +
x2 + y2

ccccccccccccccccc
4

;

fc = CompileA8x, y<, ÆSin@50 xD + Sin@60 ÆyD + Sin@70 Sin@xDD +

Sin@Sin@80 yDD − Sin@10 Hx + yLD +
x2 + y2

ccccccccccccccccc
4

E;

Takes one argument of the form {x,y} and its compiled version:

f@8x_, y_<D := f@x, yD;
fcl = CompileA88x, _Real, 1<<, ÆSin@50 xP1TD + Sin@60 ÆxP2TD + Sin@70 Sin@xP1TDD +

Sin@Sin@80 xP2TDD − Sin@10 HxP1T + xP2TLD +
xP1T2 + xP2T2

cccccccccccccccccccccccccccccccccc
4

E;

Both the compiled and the non-compiled versions yield the same result. The compiled version uses
optimized byte-code.

f@1., 1.D
fc@1., 1.D
f@81., 1.<D
fcl@81., 1.<D

−0.0362174

−0.0362174

−0.0362174

−0.0362174

Yet another version of the above:

f@x_D := ÆSin@50 xP1TD + Sin@60 ÆxP2TD + Sin@70 Sin@xP1TDD +

Sin@Sin@80 xP2TDD − Sin@10 HxP1T + xP2TLD +
xP1T2 + xP2T2

cccccccccccccccccccccccccccccccccc
4

;

A First Look

A wide angle view of our function g:

Plot3D@fc@x, yD, 8x, −30, 30<, 8y, −30, 30<D

 Appendix B 118

A view of the unit box centered at the origin using PlotPoints→37:

Plot3D@fc@x, yD, 8x, −1, 1<, 8y, −1, 1<, 8PlotPoints → 37, Mesh → False<D

A view of the unit box centered at the origin using PlotPoints→300:

Plot3D@fc@x, yD, 8x, −1, 1<, 8y, −1, 1<, 8PlotPoints → 300, Mesh → False<D

A ContourPlot of our function g. White areas are larger values, dark areas are lower values.

ContourPlot@fc@x, yD, 8x, −1, 1<,
8y, −1, 1<, 8PlotPoints → 500, ContourLines → False<D;

We can get an approximate upper bound on the global minimum by considering a fine grid of points in
@-1, 1Dμ @-1, 1D

Min@Table@fc@x, yD, 8x, −1, 1, 0.01<, 8y, −1, 1, 0.01<DD

−3.24646

We can find the minimum value and its point in one swoop

grid = Flatten@Table@8x, y<, 8x, −1, 1, 0.01<, 8y, −1, 1, 0.01<D, 1D;
fgrid = fcl ê@ grid;
8Min@fgridD, Flatten@Extract@grid, Position@fgrid, Min@fgridDDD, 1D<

8−3.24646, 8−0.02, 0.21<<

Using a finer grid will give us a better approximation

Min@Table@fc@x, yD, 8x, −1, 1, 0.001<, 8y, −1, 1, 0.001<DD

−3.30563

We can use this fine grid to find a better rough estimate

grid = Flatten@Table@8x, y<, 8x, −1, 1, 0.001<, 8y, −1, 1, 0.001<D, 1D;
fgrid = fcl ê@ grid;
8Min@fgridD, Flatten@Extract@grid, Position@fgrid, Min@fgridDDD, 1D<

8−3.30563, 8−0.024, 0.211<<

Survival of the Fittest

I have left some of the old code in just to be complete. The "Old Solution" was before I tried using
functional programming. At first it was a bit more intuitive to program the genetic algorithm this way, but
I found a better way later.

 Appendix B 119

ü Algorithm 4.1 (Without Pictures)

ü Old Solution

Writing a routine using operational programming is tedious.

H∗ g HxL, the objective function. ∗L
g2@x_D := ÆSin@50 x@@1DDD + Sin@60 Æx@@2DDD + Sin@70 Sin@x@@1DDDD +

Sin@Sin@80 x@@2DDDD − Sin@10 Hx@@1DD + x@@2DDLD +
x@@1DD2 + x@@2DD2

cc
4

;

H∗ R, the search rectangle is @−1,1D x @−1,1D. ∗L
h1 = 1;
h2 = 1;
H∗ n, the number of children for each parent,
and the number of points in the new generation. ∗L

n = 40;
H∗ epsilon, a bound on the absolute

error in the location of the minimum of g in R. ∗L
epsilon = 10−6;
H∗ a counter for the number of generations ∗L
gen = 1;

H∗ Step 1 ∗L
H∗ z is the center of R ∗L
z = 80., 0.<;

parents = 8z<;
children = 8<;
fvals = 8g2@zD<;
H∗ s, a scaling factor for shrinking the search domain. ∗L
s = 1ê 2;

 Appendix B 120

H∗ Step 2 ∗L
While@Min@h1, h2D > epsilon,

H∗ For each p ∈ parents,
let its children consist of n random points in a

rectangle around p = Hp1,p2L. Use a uniform random
x and y chosen from @−h1,h1D+p1 and @−h2,h2D+p2,

respectively. We store the children for parent i
in the following way: for parent@@iDD,

its children are located at children@@1 through 50DD. The
first generation starts with n children,

the remaining generations each have n∗n children total. ∗L
For@i = 1, i ≤ Length@parentsD, i++,

children = Join@children,
SetPrecision@Table@8Random@Real, 8−h1, h1< + parents@@iDD@@1DD D,

Random@Real, 8−h2, h2< + parents@@iDD@@2DDD<, 850<D, 15DD;
D;
H∗ Let newfvals be the f−

values on the set of all children. We map g2 to each
element in g2 and then separate the values by braces. ∗L

newfvals = Map@g2, childrenD;
H∗ Form fvals‹newfvals,

and use the n lowest values to determine the points
from the children and the previous parents that will
survive. Let parents be this set of n points. ∗L

totalcandidates = Join@parents, childrenD;
totalfvals = Join@fvals, newfvalsD;
sortorder = Take@Ordering@totalfvalsD, nD;
parents = 8< ;
For@i = 1, i ≤ n,

parents = Append@parents, totalcandidates@@sortorder@@iDDDDD; i++D;
H∗ Let fvals be the corresponding f−

values for the parents ∗L
fvals = Map@g2, parentsD;
H∗ Shrink the search rectangle by s. ∗L
h1 = h1 ∗ s;
h2 = h2 ∗ s;
Print@gen, " ", fvals@@1DD, " ", parents@@1DDD;
gen++;

D;

1 −1.7097164721036 80.0577690227159755, 0.778113311347590<

2 −3.0196864777856 8−0.387603345785599, −0.0971305675385633<

3 −3.0196864777856 8−0.387603345785599, −0.0971305675385633<

4 −3.0398985053265 8−0.397958059156894, −0.0995745144209791<

5 −3.23899704116767 8−0.0218025425103515, 0.207546887648758<

6 −3.30440566341025 8−0.0252607838684860, 0.210855761091968<

 Appendix B 121

7 −3.30456933266838 8−0.0235566475804601, 0.210430510069728<

8 −3.30645781845459 8−0.0241481149711172, 0.210819300335705<

9 −3.30677916400846 8−0.0243913203183506, 0.210478259894842<

10 −3.30685943676274 8−0.0243796962936357, 0.210651340168840<

11 −3.30686618746736 8−0.0244020472700103, 0.210590137227259<

12 −3.30686784132445 8−0.0244178268089609, 0.210618185161435<

13 −3.30686851521736 8−0.0243975617425479, 0.210609487282718<

14 −3.30686863912703 8−0.0244045035910734, 0.210611761123014<

15 −3.30686863912703 8−0.0244045035910734, 0.210611761123014<

16 −3.30686864535369 8−0.0244026517274562, 0.210612987026216<

17 −3.30686864743351 8−0.0244031613023877, 0.210612361543736<

18 −3.30686864747280 8−0.0244030610473374, 0.210612410160251<

19 −3.30686864747280 8−0.0244030610473374, 0.210612410160251<

20 −3.30686864747280 8−0.0244030610473374, 0.210612410160251<

H∗ Step 3 ∗L
H∗ Return the smallest value

in fvals and the corresponding parent ∗L
Print@"Minimum value = ", fvals@@1DDD;
Print@"Approximate location = ", parents@@1DDD;

Minimum value = −3.30686864747280

Approximate location = 8−0.0244030610473374, 0.210612410160251<

ü New Solution

Using functional programming gives us a solution similar to that in the SIAM book.

 Appendix B 122

H∗ f HxL, the objective function as defined above ∗L
H∗ R, the search rectangle is @−1,1D x @−1,1D. I

make it clear that the bounds of R are h1 and h2
and are both equal Hsince it is a squareL. For
simplicity we let this value be h ∗L

h = h1 = h2 = 1;
H∗ n, the number of children for each parent,
and the number of points in the new generation ∗L

n = 50;
H∗ ε, a bound on the absolute error

in the location of the minimum of g in R ∗L
ε = 10−6;
H∗ counter, a counter for the number of generations ∗L
counter = 1;
H∗ z, the center of R ∗L
z = 80., 0.<;
H∗ parents, a list of the parents of our

generation. It begins initially as the center of R ∗L
parents = 8z<;
H∗ children, a list of the children of

each point in List@parentsD. It is initially empty ∗L
children = 8<;
H∗ fvals, the function values »of the points in List@childrenD ∗L
fvals = 8fcl@zD<;
H∗ s, a scaling factor for shrinking the search domain ∗L
s = 1ê 2;

 Appendix B 123

While@h > ε,
H∗ For each p ∈ parents, let its children consists of n random

points in a rectangle around p. H2 Random@D−1L yields a
point in @−1,1D×@−1,1D and h is the scaling factor. Flatten
is required since the out Table makes an extra List ∗L

children = Flatten@Table@# + Table@h H2 Random@D − 1L, 82<D, 8n<D & ê@

parents, 1D;
H∗ Let newfvals be the f−values on the set of all

children. We can just Map g over all of the children ∗L
newfvals = fcl ê@ children;
H∗ For simplicity we join together the f−

values and the points in a List of the form 8g@pointD,point<. Notice
in this step we also perform Join@fvals,newfvalsD since
union decides to sort the results as well. We then Sort these
results and using Take we can take the first n elements of
this list Hthe n smallest valuesL and use those as parents ∗L

gen = Take@Sort@Transpose@8Join@fvals, newfvalsD,
Join@parents, childrenD<DD, nD;

H∗ I needed some way of formatting the List gen
to remove the fvals from it ∗L

parents = Drop@Flatten@gen, 1D, 81, 2 n, 2<D;
H∗ Let fvals be the set of corresponding f−

values of the new parents ∗L
fvals = f ê@ parents;
H∗ Reduce the size of our search rectangle R by a factor of s ∗L
h = h ∗ s;
H∗ Print out what our current

minimum is and its approximate location ∗L
Print@counter, " ", fvalsP1T, " ", parentsP1TD;
H∗ Update the gen counter ∗L
counter++;
D;

Print@"Minimum value = ", fvalsP1TD;
Print@"Approximate location = ", parentsP1TD;

1 −1.43256 8−0.392426, 0.523681<

2 −3.1944 8−0.393275, −0.091631<

3 −3.1944 8−0.393275, −0.091631<

4 −3.29786 8−0.0243328, 0.209275<

5 −3.3052 8−0.0245878, 0.210053<

6 −3.3052 8−0.0245878, 0.210053<

7 −3.30579 8−0.0247195, 0.21022<

8 −3.30685 8−0.02433, 0.210596<

9 −3.30685 8−0.02433, 0.210596<

 Appendix B 124

10 −3.30686 8−0.0243417, 0.210615<

11 −3.30687 8−0.0244191, 0.210598<

12 −3.30687 8−0.0244192, 0.21061<

13 −3.30687 8−0.0243982, 0.210616<

14 −3.30687 8−0.0244039, 0.210612<

15 −3.30687 8−0.0244039, 0.210612<

16 −3.30687 8−0.0244031, 0.210612<

17 −3.30687 8−0.0244031, 0.210612<

18 −3.30687 8−0.0244031, 0.210612<

19 −3.30687 8−0.0244031, 0.210612<

20 −3.30687 8−0.0244031, 0.210612<

Minimum value = −3.30687

Approximate location = 8−0.0244031, 0.210612<

ü Algorithm 4.1 (With Pictures)

Some of the pictures were removed due to size constraints.

ü New Solution

Here is the above code, but with all the comments stripped. This is the non color version.

 Appendix B 125

H∗ A dummy variable for storing all the graphics primitives ∗L
currentPlotData = 8Black, Rectangle@8−1, −1<, 81, 1<D, White<;

h = 1;
n = 50;
ε = 10−6;
counter = 1;
z = 80., 0.<;
parents = 8z<;
children = 8<;
fvals = 8fcl@zD<;
s = 1ê 2;
While@h > ε,

children =

Flatten@Table@# + Table@h H2 Random@D − 1L, 82<D, 8n<D & ê@ parents, 1D;
newfvals = fcl ê@ children;
gen = Take@Sort@

Transpose@8Join@fvals, newfvalsD, Join@parents, childrenD<DD, nD;
parents = Drop@Flatten@gen, 1D, 81, 2 n, 2<D;
fvals = fcl ê@ parents;
h = h ∗ s;
Print@counter, " ", fvalsP1T, " ", parentsP1TD;
counter++;
AppendTo@currentPlotData, Point ê@ parentsD;
H∗ Generates plots that show within original box R ∗L
p1 = Graphics@currentPlotData,

AspectRatio −> Automatic, Axes −> Automatic, Frame → True,
PlotRange → 88−1, 1<, 8−1, 1<<, DisplayFunction → IdentityD;

p2 = Graphics@currentPlotData, AspectRatio −> Automatic,
Axes −> Automatic, Frame → True,
PlotRange → 88−h, h< + parentsP1, 1T, 8−h, h< + parentsP1, 2T<,
DisplayFunction → IdentityD;

Show@GraphicsArray@8p1, p2<DD
D;

Print@"Minimum value = ", fvalsP1TD;
Print@"Approximate location = ", parentsP1TD;

1 −1.86657 8−0.123739, 0.362735<

-0.75-0.5-0.2500.250.50.751

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.6 -0.4 -0.2 0 0.2

0

0.2

0.4

0.6

0.8

 Appendix B 126

2 −2.94212 8−0.390521, −0.0858331<

3 −3.16876 8−0.395126, −0.0900202<

4 −3.16876 8−0.395126, −0.0900202<

5 −3.22208 8−0.0248888, 0.214858<

6 −3.30571 8−0.0239211, 0.210913<

7 −3.30589 8−0.0243598, 0.21017<

8 −3.30678 8−0.0245741, 0.210609<

9 −3.30685 8−0.0244841, 0.210595<

10 −3.30687 8−0.0244349, 0.210604<

11 −3.30687 8−0.0244349, 0.210604<

12 −3.30687 8−0.0244016, 0.210609<

13 −3.30687 8−0.0244016, 0.210609<

14 −3.30687 8−0.0244058, 0.210614<

15 −3.30687 8−0.0244023, 0.210613<

16 −3.30687 8−0.0244028, 0.210613<

17 −3.30687 8−0.024403, 0.210612<

18 −3.30687 8−0.024403, 0.210612<

19 −3.30687 8−0.024403, 0.210612<

20 −3.30687 8−0.0244031, 0.210612<

-0.75-0.5-0.250 0.250.50.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.024404-0.0244038-0.0244035-0.0244033-0.024403-0.0244028-0.0244025-0.0244023
0.210612
0.210612
0.210612
0.210612
0.210613
0.210613
0.210613
0.210613

Minimum value = −3.30687

Approximate location = 8−0.0244031, 0.210612<

This is the color version.

 Appendix B 127

H∗ A dummy variable for storing all the graphics primitives ∗L
currentPlotData = 88Black, Rectangle@8−1, −1<, 81, 1<D<<;
H∗ A dummy variable for storing the white

rectangle for the approximate answer at each gen ∗L
currentRecData = 8<;
H∗ We are going to put white boxes

behind the approximate answer at each gen ∗L
curPointSize = 0.02;
H∗ The amount we will reduce

curPointSize by at each gen from 1 through 5 ∗L
redPointSize = 0.004;
H∗ The amount we will reduce curPointSize by at each gen from 5 on ∗L
redPointSize5 = 0.0001;
H∗ The current Hue for the Points in gen ∗L
curHue = 1;
H∗ The factor to reduce curHue by ∗L
redHue = 0.045;
H∗ The function for plotting the rectangle ∗L
centeredRectangle@8x_, y_<D :=

8White, Rectangle@8x, y< − 80.02, 0.02<, 8x, y< + 80.02, 0.02<D<;
centeredRectangle@8x_, y_<, size_D :=

8White, Rectangle@8x, y< − 8size, size<, 8x, y< + 8size, size<D<;
h = 1;
n = 50;
ε = 10−6;
counter = 1;
z = 80., 0.<;
parents = 8z<;
children = 8<;
fvals = 8f@zD<;
s = 1ê 2;
While@h > ε,

children =

Flatten@Table@# + Table@h H2 Random@D − 1L, 82<D, 8n<D & ê@ parents, 1D;
newfvals = f ê@ children;
gen = Take@Sort@

Transpose@8Join@fvals, newfvalsD, Join@parents, childrenD<DD, nD;
parents = Drop@Flatten@gen, 1D, 81, 2 n, 2<D;
fvals = f ê@ parents;
h = h ∗ s;
Print@counter, " ", fvalsP1T, " ", parentsP1TD;
counter++;
AppendTo@currentRecData, centeredRectangle@parentsP1TDD;
AppendTo@currentPlotData,
8Hue@curHueD, PointSize@curPointSizeD, Point ê@ parents<D;
H∗ Reduce the size of the Points and change

the Color for the next iteration ∗L
If@counter < 6, curPointSize −= redPointSize,

 Appendix B 128

curPointSize −= redPointSize5D;
curHue −= redHue;
H∗ Generates plots that show within original box R ∗L
p1 = Graphics@currentPlotData,

AspectRatio → Automatic, Axes → Automatic, Frame → True,
PlotRange → 88−1, 1<, 8−1, 1<<, DisplayFunction → IdentityD;

p2 = Graphics@currentPlotData, AspectRatio → Automatic,
Axes → Automatic, Frame → True,
PlotRange → 88−h, h< + parentsP1, 1T, 8−h, h< + parentsP1, 2T<,
DisplayFunction → IdentityD;

Show@GraphicsArray@8p1, p2<DD;
D;

Print@"Minimum value = ", fvalsP1TD;
Print@"Approximate location = ", parentsP1TD;
Show@Graphics@currentPlotData, AspectRatio → Automatic,

PlotRange → 88−h, h< + parentsP1, 1T, 8−h, h< + parentsP1, 2T<,
Frame → True, FrameTicks → 88−0.024404, −0.0244035,

−0.024403, −0.0244025<, Automatic, None, None<DD;
Show@Graphics@Insert@currentPlotData, currentRecData, 2D,

AspectRatio → Automatic, Frame → True, PlotRange → 88−1, 1<, 8−1, 1<<,
FrameTicks → 88−1, −0.5, 0, 0.5, 1<, Automatic, None, None<DD;

1 −1.25282 8−0.808323, −0.899458<

2 −3.20409 8−0.0262528, 0.21509<

3 −3.20409 8−0.0262528, 0.21509<

4 −3.20409 8−0.0262528, 0.21509<

5 −3.24355 8−0.0267874, 0.207622<

6 −3.30503 8−0.0237475, 0.210273<

7 −3.30675 8−0.0243902, 0.210768<

8 −3.30683 8−0.024343, 0.210682<

9 −3.30685 8−0.0243836, 0.210667<

10 −3.30687 8−0.0243756, 0.210608<

11 −3.30687 8−0.0243856, 0.210606<

12 −3.30687 8−0.0244066, 0.210615<

13 −3.30687 8−0.0244066, 0.210615<

14 −3.30687 8−0.0244023, 0.210612<

15 −3.30687 8−0.0244023, 0.210612<

16 −3.30687 8−0.0244025, 0.210612<

17 −3.30687 8−0.0244025, 0.210612<

 Appendix B 129

18 −3.30687 8−0.0244031, 0.210612<

19 −3.30687 8−0.0244031, 0.210612<

20 −3.30687 8−0.0244031, 0.210612<

-0.75-0.5-0.250 0.250.50.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.024404-0.0244038-0.0244035-0.0244033-0.024403-0.0244028-0.0244025-0.0244023
0.210612

0.210612

0.210612

0.210612

0.210613

0.210613

0.210613

0.210613

Minimum value = −3.30687

Approximate location = 8−0.0244031, 0.210612<

ü Old Solution

H∗ g HxL, the objective function. ∗L
g2@x_D := ÆSin@50 x@@1DDD + Sin@60 Æx@@2DDD + Sin@70 Sin@x@@1DDDD +

Sin@Sin@80 x@@2DDDD − Sin@10 Hx@@1DD + x@@2DDLD +
x@@1DD2 + x@@2DD2

cc
4

;

H∗ R, the search rectangle is @−1,1D x @−1,1D. ∗L
h1 = 1;
h2 = 1;
H∗ n, the number of children for each parent,
and the number of points in the new generation. ∗L

n = 40;
H∗ epsilon, a bound on the absolute

error in the location of the minimum of g in R. ∗L
epsilon = 10−6;
H∗ a counter for the number of generations ∗L
gen = 1;

 Appendix B 130

H∗ Step 1 ∗L
H∗ z is the center of R ∗L
z = 80., 0.<;

parents = 8z<;
children = 8<;
fvals = 8g2@zD<;
H∗ s, a scaling factor for shrinking the search domain. ∗L
s = 1ê 2;
H∗ A dummy variable for storing all the graphics primitives ∗L
currentPlotData = 8Disk@80, 0<, 1D, GrayLevel@1D<;

 Appendix B 131

H∗ Step 2 ∗L
While@Min@h1, h2D > epsilon,

H∗ For each p ∈ parents,
let its children consist of n random points in a

rectangle around p = Hp1,p2L. Use a uniform random
x and y chosen from @−h1,h1D+p1 and @−h2,h2D+p2,

respectively. We store the children for parent i
in the following way: for parent@@iDD,

its children are located at children@@1 through 50DD. The
first generation starts with n children,

the remaining generations each have n∗n children total. ∗L
For@i = 1, i ≤ Length@parentsD, i++,

children = Join@children,
SetPrecision@Table@8Random@Real, 8−h1, h1< + parents@@iDD@@1DD D,

Random@Real, 8−h2, h2< + parents@@iDD@@2DDD<, 850<D, 15DD;
D;
H∗ Let newfvals be the f−

values on the set of all children. We map g2 to each
element in g2 and then separate the values by braces. ∗L

newfvals = Map@g2, childrenD;
H∗ Form fvals‹newfvals,

and use the n lowest values to determine the points
from the children and the previous parents that will
survive. Let parents be this set of n points. ∗L

totalcandidates = Join@parents, childrenD;
totalfvals = Join@fvals, newfvalsD;
sortorder = Take@Ordering@totalfvalsD, nD;
parents = 8< ;
For@i = 1, i ≤ n,

parents = Append@parents, totalcandidates@@sortorder@@iDDDDD; i++D;
H∗ Let fvals be the corresponding f−

values for the parents ∗L
fvals = Map@g2, parentsD;
H∗ Shrink the search rectangle by s. ∗L
h1 = h1 ∗ s;
h2 = h2 ∗ s;
gen++;
H∗ Plotting our generations

involves adding to our currentPlotData. ∗L
currentPlotData = Join@currentPlotData, Map@Point, parentsDD;
Show@Graphics@currentPlotData,

AspectRatio −> Automatic, Axes −> Automatic, Frame → TrueDD;
D;

First Iteration

 Appendix B 132

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Last Iteration

-0.026-0.0255-0.025-0.0245-0.024-0.0235-0.023-0.0225

0.209

0.2095

0.21

0.2105

0.211

0.2115

0.212

0.2125

H∗ Step 3 ∗L
H∗ Return the smallest value

in fvals and the corresponding parent ∗L
Print@"Minimum value = ", fvals@@1DDD;
Print@"Approximate location = ", parents@@1DDD;

 Appendix B 133

ü The SIAM Book Solution

This is a concise way to use the genetic algorithm done in functional programming:

h = 1; gen = 8f@#D, #< & ê@ 880, 0<<;
While@h > 10−6,

new =

Flatten@Table@#P2T + Table@h H2 Random@D − 1L, 82<D, 850<D & ê@ gen, 1D;
gen = Take@Sort@Join@gen, 8f@#D, #< & ê@ newDD, 50D;
h = h ê2D;

genP1T

8−3.30687, 8−0.0244031, 0.210612<<

The Mathematica one-liner

NMinimize@8f@x, yD, x2 + y2 ≤ 1<, 8x, y<,
Method → 8"DifferentialEvolution", "SearchPoints" → 250<D

8−3.30687, 8x → −0.0244031, y → 0.210612<<

Interval Arithmetic

Why is R = @-1, 1Dμ @-1, 1D the area where our minimum lies? We may use interval arithmetic:

f@Interval@8−∞, −1.<D, Interval@8−∞, ∞<DD
f@Interval@81., ∞<D, Interval@8−∞, ∞<DD
f@Interval@8−∞, ∞<D, Interval@8−∞, −1.<DD
f@Interval@8−∞, ∞<D, Interval@81., ∞<DD

Interval@8−3.22359, ∞<D

Interval@8−3.22359, ∞<D

Interval@8−3.22359, ∞<D

Interval@8−3.22359, ∞<D

ü Search & Destroy

ü Supporting Functions

This is a way to visually plot intervals

 Appendix B 134

showIntervals@a_List, opts___D := HShow@Graphics@
H8PointSize@.025D, 88Hue@Random@D, .5, .7D,

tt = Rectangle @@ Htt = Transpose@8#1P1, 1T, #1P2, 1T<DL<,
Point@.5 Plus @@ ttD<< &L ê@ aD, optsDL ê; Depth@aD == 5;

The midpoint of an interval

mid@X_D := HMin@XD + Max@XDLê2;
midl@8X_, Y_<D := 8HMin@XD + Max@XDLê2, HMin@YD + Max@YDLê2<

Good implementation of subdivide

subdivide1D@X_D := Interval ê@ 88Min@XD, mid@XD<, 8mid@XD, Max@XD<<;
subdivide2D@8X_, Y_<D := Distribute@8subdivide1D@XD, subdivide1D@YD<, ListD;

 Appendix B 135

ü Algorithm 4.2 (Using only the upper bound test)

H∗ STEP 1 ∗L
H∗ rects,

the set of rectangles that might contain the global minimum ∗L
rects = N@88Interval@8−1, 1<D, Interval@8−1, 1<D<<D;
H∗ i, a counter for the number of iterations ∗L
i = 0;
H∗ imax, the maximum number of allowed iterations ∗L
imax = 20;
H∗ lwrbnd, lower bound of our estimate to the min value ∗L
lwrbnd = −∞;
H∗ uprbnd, upper bound of our estimate to the min value ∗L
uprbnd = −3.24;
H∗ ε, a bound on the absolute error for

the final approximation to the lowest f−value ∗L
ε = 10−12;
H∗ fvals. the f−values of each rectangle in rect ∗L
fvals = 8<;
H∗ pos,

a list of positions of rectangles that changes based on our needs ∗L
pos = 8<;

H∗ STEP 2 ∗L
While@Huprbnd − lwrbndL > ε && i < imax,

i++;
Print@"Iteration ", i, "\n", "−−−−−−−−−−−−"D;
H∗ Uniformly divide each

rectangle in rects into 4 smaller rectangles ∗L
rects = Join @@ subdivide2D ê@ rects;
Print@"The number of rectangles remaining

before the size and gradient test = ", Length@rectsDD;
H∗ Find the fvals of each of the rectangles ∗L
fvals = f ê@ rects;
H∗ Find the new upper bound ∗L
uprbnd = Min@uprbnd, Min@Max ê@ fvalsDD;
H∗ Check the

size: Delete from rects any rectangle T for which the left end
of f@TD is not less than uprbnd. We can do this by finding
the positions of the rectangles that the left is of f@TD is
less than uprbnd, then just reseting rects ∗L

pos = Flatten@Position@Min ê@ fvals, _ ?H# ≤ uprbnd &LDD;
H∗ Now just let rects and fvals be the corresponding

rectangles and f−values that passed the first test ∗L
rects = rectsPposT;
fvals = fvalsPposT;
Print@"The number of rectangles remaining after the size test = ",

Length@rectsDD;

 Appendix B 136

lwrbnd = Min@fvalsD;
H∗ Normal view ∗L
showIntervals@rects, AspectRatio → Automatic,

Frame → True, PlotRange → 88−1, 1<, 8−1, 1<<D;
D;

Iteration 1
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

Iteration 2
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 16

The number of rectangles remaining after the size test = 16

Iteration 3
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 64

The number of rectangles remaining after the size test = 60

Iteration 4
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 240

The number of rectangles remaining after the size test = 110

Iteration 5
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 440

The number of rectangles remaining after the size test = 58

Iteration 6
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 232

The number of rectangles remaining after the size test = 35

Iteration 7
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 140

The number of rectangles remaining after the size test = 14

Iteration 8
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 56

The number of rectangles remaining after the size test = 13

 Appendix B 137

Iteration 9
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 52

The number of rectangles remaining after the size test = 16

Iteration 10
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 64

The number of rectangles remaining after the size test = 37

Iteration 11
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 148

The number of rectangles remaining after the size test = 55

Iteration 12
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 220

The number of rectangles remaining after the size test = 100

Iteration 13
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 400

The number of rectangles remaining after the size test = 201

Iteration 14
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 804

The number of rectangles remaining after the size test = 400

Iteration 15
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 1600

The number of rectangles remaining after the size test = 805

Iteration 16
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 3220

The number of rectangles remaining after the size test = 1608

Iteration 17
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 6432

The number of rectangles remaining after the size test = 3220

 Appendix B 138

Iteration 18
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 12880

The number of rectangles remaining after the size test = 6427

Iteration 19
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 25708

The number of rectangles remaining after the size test = 12869

Iteration 20
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 51476

The number of rectangles remaining after the size test = 25757

 Appendix B 139

ü Algorithm 4.2 (Using both the upper bound and gradient test)

H∗ STEP 1 ∗L
H∗ rects,

the set of rectangles that might contain the global minimum ∗L
rects = N@88Interval@8−1.0, 1.0<D, Interval@8−1.0, 1.0<D<<D;
H∗ i, a counter for the number of iterations ∗L
i = 0;
H∗ imax, the maximum number of allowed iterations ∗L
imax = 20;
H∗ lwrbnd, lower bound of our estimate to the min value ∗L
lwrbnd = −∞;
H∗ uprbnd, upper bound of our estimate to the min value ∗L
uprbnd = −3.24;
H∗ reqDigits, the number of digits required ∗L
reqDigits = 12;
H∗ ε, a bound on the absolute error for

the final approximation to the lowest f−value ∗L
ε = 10−reqDigits;
H∗ fvals. the f−values of each rectangle in rect ∗L
fvals = 8<;
H∗ pos,

a list of positions of rectangles that changes based on our needs ∗L
pos = 8<;
H∗ gradient,

a function that returns both gx and gy where g is our function ∗L
gradient@8x_, y_<D := Evaluate@8D@f@x, yD, xD, D@f@x, yD, yD<D;
H∗ a list to store an array of graphics for presentation purposes ∗L
ISgraphics = 8<;
H∗ examined, the total number of rectangles examined in one run ∗L
examined = 0;

H∗ STEP 2 ∗L
While@i < imax && Huprbnd − lwrbndL > ε,

i++;
Print@"Iteration ", i, "\n", "−−−−−−−−−−−−"D;
H∗ Uniformly divide each

rectangle in rects into 4 smaller rectangles ∗L
rects = Join @@ subdivide2D ê@ rects;
Print@"The number of rectangles remaining

before the size and gradient test = ", Length@rectsDD;
examined += Length@rectsD;
H∗ Find the fvals of each of the rectangles ∗L
fvals = f ê@ rects;
H∗ Find the new upper bound ∗L
uprbnd = Min@uprbnd, Min@Max ê@ fvalsDD;
H∗ Check the

size: Delete from rects any rectangle T for which the left end

 Appendix B 140

of f@TD is not less than uprbnd. We can do this by finding
the positions of the rectangles that the left is of f@TD is
less than uprbnd, then just reseting rects ∗L

pos = Flatten@Position@Min ê@ fvals, _ ?H# ≤ uprbnd &LDD;
H∗ Now just let rects and fvals be the corresponding

rectangles and f−values that passed the first test ∗L
rects = rectsPposT;
fvals = fvalsPposT;
Print@"The number of rectangles remaining after the size test = ",

Length@rectsDD;
H∗ Check the gradient: delete from rects any interior rectangle T for

which fx@TD does not contain 0 or fy@TD does not contain 0 ∗L
pos = Flatten@Position@Apply@And, IntervalMemberQ@

gradient ê@ rects, 0D, 81<D, TrueDD;
rects = rectsPposT;
lwrbnd = Min@fvalsPposTD;
Print@"The number of rectangles remaining

after the size and gradient test = ", Length@rectsDD;
Print@"Approximate location of the minimum = ", midl ê@ rectsD;
Print@"The current upper bound = ", NumberForm@uprbnd, 20DD;
Print@"The current lower bound = ", NumberForm@lwrbnd, 20DD;
H∗ Normal view ∗L
showIntervals@rects, AspectRatio → Automatic,

Frame → True, PlotRange → 88−1, 1<, 8−1, 1<<,
PlotLabel → StringForm@"Upper Bound = ``", NumberForm@uprbnd, 5DDD;
H∗ IS view ∗L
H∗ AppendTo@ISgraphics,

showIntervals@rects,AspectRatio→Automatic, Frame→True,
FrameTicks→None,PlotRange→88−1,1<,8−1,1<<,PlotLabel→

StringForm@"Upper Bound = ``", NumberForm@uprbnd,5DDDD; ∗L
D;

Print@"Results", "\n", "−−−−−−−"D;
Print@"Total number of rectangles examined = ", examinedD;
Print@"Interval enclosure of the global minimum = ", Flatten@rectsDD;
Print@"Interval enclosure of the f−value = ", f@Flatten@rectsDDD;
Print@"Approximate location of the global minimum = ",

NumberForm@midl@Flatten@rectsDD, reqDigitsDD;
Print@"Approximate f−value = ",

NumberForm@f@midl@Flatten@rectsDDD, reqDigitsDD;

Iteration 1
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 4

Approximate location of the minimum =

88−0.5, −0.5<, 8−0.5, 0.5<, 80.5, −0.5<, 80.5, 0.5<<

 Appendix B 141

The current upper bound = −3.24

The current lower bound = −3 +
1
cccc
Æ
− Sin@1D

Iteration 2
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 16

The number of rectangles remaining after the size test = 16

The number of rectangles remaining after the size and gradient test = 16

Approximate location of the minimum =

88−0.75, −0.75<, 8−0.75, −0.25<, 8−0.25, −0.75<, 8−0.25, −0.25<,
8−0.75, 0.25<, 8−0.75, 0.75<, 8−0.25, 0.25<, 8−0.25, 0.75<,
80.25, −0.75<, 80.25, −0.25<, 80.75, −0.75<, 80.75, −0.25<,
80.25, 0.25<, 80.25, 0.75<, 80.75, 0.25<, 80.75, 0.75<<

The current upper bound = −3.24

The current lower bound = −3 +
1
cccc
Æ
− Sin@1D

Iteration 3
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 64

The number of rectangles remaining after the size test = 60

The number of rectangles remaining after the size and gradient test = 60

Approximate location of the minimum =

88−0.875, −0.625<, 8−0.625, −0.875<, 8−0.625, −0.625<, 8−0.875, −0.375<,
8−0.875, −0.125<, 8−0.625, −0.375<, 8−0.625, −0.125<, 8−0.375, −0.875<,
8−0.375, −0.625<, 8−0.125, −0.875<, 8−0.125, −0.625<, 8−0.375, −0.375<,
8−0.375, −0.125<, 8−0.125, −0.375<, 8−0.125, −0.125<, 8−0.875, 0.125<,
8−0.875, 0.375<, 8−0.625, 0.125<, 8−0.625, 0.375<, 8−0.875, 0.625<,
8−0.625, 0.625<, 8−0.625, 0.875<, 8−0.375, 0.125<, 8−0.375, 0.375<,
8−0.125, 0.125<, 8−0.125, 0.375<, 8−0.375, 0.625<, 8−0.375, 0.875<,
8−0.125, 0.625<, 8−0.125, 0.875<, 80.125, −0.875<, 80.125, −0.625<,
80.375, −0.875<, 80.375, −0.625<, 80.125, −0.375<, 80.125, −0.125<,
80.375, −0.375<, 80.375, −0.125<, 80.625, −0.875<, 80.625, −0.625<,
80.875, −0.625<, 80.625, −0.375<, 80.625, −0.125<, 80.875, −0.375<,
80.875, −0.125<, 80.125, 0.125<, 80.125, 0.375<, 80.375, 0.125<,
80.375, 0.375<, 80.125, 0.625<, 80.125, 0.875<, 80.375, 0.625<,
80.375, 0.875<, 80.625, 0.125<, 80.625, 0.375<, 80.875, 0.125<,
80.875, 0.375<, 80.625, 0.625<, 80.625, 0.875<, 80.875, 0.625<<

The current upper bound = −3.24

The current lower bound = −3 +
1
cccc
Æ
− Sin@1D

Iteration 4
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 240

The number of rectangles remaining after the size test = 110

 Appendix B 142

The number of rectangles remaining after the size and gradient test = 110

Approximate location of the minimum =

88−0.6875, −0.5625<, 8−0.5625, −0.6875<, 8−0.5625, −0.5625<,
8−0.8125, −0.3125<, 8−0.9375, −0.1875<, 8−0.9375, −0.0625<,
8−0.8125, −0.1875<, 8−0.6875, −0.4375<, 8−0.6875, −0.3125<, 8−0.5625, −0.4375<,
8−0.5625, −0.0625<, 8−0.4375, −0.6875<, 8−0.4375, −0.5625<, 8−0.3125, −0.6875<,
8−0.1875, −0.9375<, 8−0.0625, −0.9375<, 8−0.0625, −0.5625<, 8−0.3125, −0.3125<,
8−0.4375, −0.1875<, 8−0.4375, −0.0625<, 8−0.3125, −0.1875<, 8−0.3125, −0.0625<,
8−0.1875, −0.4375<, 8−0.1875, −0.3125<, 8−0.0625, −0.4375<, 8−0.0625, −0.3125<,
8−0.1875, −0.1875<, 8−0.8125, 0.1875<, 8−0.9375, 0.4375<, 8−0.8125, 0.3125<,
8−0.8125, 0.4375<, 8−0.6875, 0.0625<, 8−0.6875, 0.1875<, 8−0.5625, 0.0625<,
8−0.5625, 0.1875<, 8−0.6875, 0.3125<, 8−0.5625, 0.5625<, 8−0.5625, 0.6875<,
8−0.5625, 0.8125<, 8−0.4375, 0.0625<, 8−0.4375, 0.4375<, 8−0.3125, 0.3125<,
8−0.3125, 0.4375<, 8−0.1875, 0.1875<, 8−0.0625, 0.0625<, 8−0.0625, 0.1875<,
8−0.1875, 0.3125<, 8−0.1875, 0.4375<, 8−0.0625, 0.3125<, 8−0.4375, 0.5625<,
8−0.4375, 0.6875<, 8−0.3125, 0.5625<, 8−0.0625, 0.6875<, 8−0.1875, 0.8125<,
8−0.1875, 0.9375<, 8−0.0625, 0.8125<, 8−0.0625, 0.9375<, 80.0625, −0.6875<,
80.0625, −0.5625<, 80.1875, −0.6875<, 80.1875, −0.5625<, 80.4375, −0.9375<,
80.3125, −0.6875<, 80.0625, −0.4375<, 80.0625, −0.0625<, 80.1875, −0.1875<,
80.1875, −0.0625<, 80.3125, −0.3125<, 80.4375, −0.4375<, 80.4375, −0.3125<,
80.3125, −0.1875<, 80.3125, −0.0625<, 80.4375, −0.1875<, 80.5625, −0.5625<,
80.6875, −0.5625<, 80.8125, −0.5625<, 80.5625, −0.4375<, 80.5625, −0.3125<,
80.6875, −0.4375<, 80.6875, −0.0625<, 80.8125, −0.1875<, 80.8125, −0.0625<,
80.9375, −0.1875<, 80.9375, −0.0625<, 80.0625, 0.0625<, 80.0625, 0.1875<,
80.1875, 0.0625<, 80.1875, 0.4375<, 80.4375, 0.1875<, 80.3125, 0.3125<,
80.3125, 0.4375<, 80.4375, 0.3125<, 80.4375, 0.4375<, 80.0625, 0.5625<,
80.0625, 0.6875<, 80.1875, 0.5625<, 80.1875, 0.6875<, 80.0625, 0.8125<,
80.3125, 0.5625<, 80.4375, 0.9375<, 80.5625, 0.0625<, 80.5625, 0.1875<,
80.6875, 0.0625<, 80.6875, 0.1875<, 80.5625, 0.3125<, 80.8125, 0.0625<,
80.9375, 0.4375<, 80.6875, 0.6875<, 80.5625, 0.8125<, 80.8125, 0.5625<<

The current upper bound = −3.24

The current lower bound = −3 +
1
cccc
Æ
− Sin@1D

Iteration 5
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 440

The number of rectangles remaining after the size test = 58

The number of rectangles remaining after the size and gradient test = 58

 Appendix B 143

Approximate location of the minimum =

88−0.40625, −0.71875<, 8−0.40625, −0.65625<, 8−0.28125, −0.71875<,
8−0.03125, −0.53125<, 8−0.40625, −0.09375<, 8−0.28125, −0.21875<,
8−0.28125, −0.09375<, 8−0.03125, −0.46875<, 8−0.03125, −0.34375<,
8−0.53125, 0.03125<, 8−0.40625, 0.03125<, 8−0.40625, 0.46875<,
8−0.28125, 0.34375<, 8−0.28125, 0.40625<, 8−0.28125, 0.46875<,
8−0.03125, 0.09375<, 8−0.03125, 0.15625<, 8−0.03125, 0.21875<,
8−0.03125, 0.28125<, 8−0.40625, 0.53125<, 8−0.40625, 0.59375<,
8−0.40625, 0.65625<, 8−0.28125, 0.53125<, 8−0.03125, 0.71875<,
8−0.03125, 0.78125<, 8−0.03125, 0.84375<, 8−0.03125, 0.90625<,
80.09375, −0.65625<, 80.09375, −0.53125<, 80.21875, −0.71875<,
80.21875, −0.65625<, 80.34375, −0.71875<, 80.09375, −0.46875<,
80.21875, −0.09375<, 80.46875, −0.34375<, 80.34375, −0.21875<,
80.34375, −0.09375<, 80.46875, −0.21875<, 80.09375, 0.03125<,
80.09375, 0.09375<, 80.09375, 0.15625<, 80.21875, 0.03125<,
80.21875, 0.46875<, 80.46875, 0.21875<, 80.34375, 0.34375<, 80.34375, 0.40625<,
80.34375, 0.46875<, 80.46875, 0.28125<, 80.46875, 0.34375<, 80.46875, 0.40625<,
80.09375, 0.59375<, 80.09375, 0.65625<, 80.09375, 0.71875<, 80.21875, 0.53125<,
80.21875, 0.59375<, 80.21875, 0.65625<, 80.09375, 0.78125<, 80.34375, 0.53125<<

The current upper bound = −3.24

The current lower bound = −3.472614981136455

Iteration 6
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 232

The number of rectangles remaining after the size test = 35

The number of rectangles remaining after the size and gradient test = 34

Approximate location of the minimum =

88−0.390625, −0.109375<, 8−0.390625, −0.078125<,
8−0.296875, −0.109375<, 8−0.015625, −0.484375<, 8−0.296875, 0.453125<,
8−0.015625, 0.140625<, 8−0.015625, 0.203125<, 8−0.390625, 0.515625<,
8−0.390625, 0.546875<, 8−0.390625, 0.609375<, 8−0.296875, 0.515625<,
8−0.015625, 0.765625<, 8−0.015625, 0.828125<, 8−0.015625, 0.859375<,
80.078125, −0.515625<, 80.078125, −0.484375<,
80.234375, −0.109375<, 80.234375, −0.078125<, 80.453125, −0.328125<,
80.359375, −0.234375<, 80.328125, −0.109375<, 80.078125, 0.046875<,
80.078125, 0.140625<, 80.359375, 0.359375<, 80.328125, 0.453125<,
80.359375, 0.453125<, 80.453125, 0.296875<, 80.453125, 0.359375<,
80.078125, 0.671875<, 80.234375, 0.515625<, 80.234375, 0.546875<,
80.234375, 0.609375<, 80.078125, 0.765625<, 80.328125, 0.515625<<

The current upper bound = −3.24

The current lower bound = −3.46478982059715

Iteration 7
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 136

The number of rectangles remaining after the size test = 13

The number of rectangles remaining after the size and gradient test = 12

 Appendix B 144

Approximate location of the minimum =

88−0.398438, −0.101563<, 8−0.398438, −0.0859375<, 8−0.0234375, −0.492188<,
8−0.289063, 0.445313<, 8−0.0234375, 0.132813<, 8−0.0234375, 0.210938<,
8−0.0234375, 0.773438<, 80.242188, −0.101563<, 80.242188, −0.0859375<,
80.351563, 0.367188<, 80.335938, 0.445313<, 80.351563, 0.445313<<

The current upper bound = −3.24

The current lower bound = −3.452277713296274

Iteration 8
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 48

The number of rectangles remaining after the size test = 13

The number of rectangles remaining after the size and gradient test = 6

Approximate location of the minimum =

88−0.394531, −0.0898438<, 8−0.0195313, −0.496094<, 8−0.292969, 0.441406<,
8−0.0273438, 0.207031<, 80.339844, 0.441406<, 80.347656, 0.441406<<

The current upper bound = −3.24

The current lower bound = −3.403657301021024

Iteration 9
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 24

The number of rectangles remaining after the size test = 5

The number of rectangles remaining after the size and gradient test = 3

Approximate location of the minimum =

88−0.396484, −0.0917969<, 8−0.392578, −0.0917969<, 8−0.0253906, 0.208984<<

The current upper bound = −3.24

The current lower bound = −3.381069262602736

Iteration 10
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 12

The number of rectangles remaining after the size test = 9

The number of rectangles remaining after the size and gradient test = 3

Approximate location of the minimum =

88−0.395508, −0.0927734<, 8−0.393555, −0.0927734<, 8−0.0244141, 0.209961<<

The current upper bound = −3.24

The current lower bound = −3.355131895424805

Iteration 11
−−−−−−−−−−−−

 Appendix B 145

The number of rectangles remaining before the size and gradient test = 12

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0239258, 0.210449<<

The current upper bound = −3.275696679400347

The current lower bound = −3.332572161150516

Iteration 12
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0241699, 0.210693<<

The current upper bound = −3.291695461173302

The current lower bound = −3.320691141905372

Iteration 13
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.024292, 0.210571<<

The current upper bound = −3.29941737519003

The current lower bound = −3.313990411780293

Iteration 14
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.024353, 0.210632<<

The current upper bound = −3.303168385814956

The current lower bound = −3.310489973558686

Iteration 15
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

 Appendix B 146

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0243835, 0.210602<<

The current upper bound = −3.305026725933474

The current lower bound = −3.308692240628655

Iteration 16
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0243988, 0.210617<<

The current upper bound = −3.305949138174336

The current lower bound = −3.307784090037926

Iteration 17
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0244064, 0.210609<<

The current upper bound = −3.306409251616346

The current lower bound = −3.307326986612257

Iteration 18
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0244026, 0.210613<<

The current upper bound = −3.306639120660016

The current lower bound = −3.307097932421579

Iteration 19
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

 Appendix B 147

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0244045, 0.210611<<

The current upper bound = −3.306753910117673

The current lower bound = −3.306983318206755

Iteration 20
−−−−−−−−−−−−

The number of rectangles remaining before the size and gradient test = 4

The number of rectangles remaining after the size test = 4

The number of rectangles remaining after the size and gradient test = 1

Approximate location of the minimum = 88−0.0244036, 0.210612<<

The current upper bound = −3.30681128557554

The current lower bound = −3.30692599313178

Results
−−−−−−−

Total number of rectangles examined = 1264

Interval enclosure of the global minimum =

8Interval@8−0.0244045, −0.0244026<D, Interval@80.210611, 0.210613<D<

Interval enclosure of the f−value = Interval@8−3.30693, −3.30681<D

Approximate location of the global minimum = 8−0.0244035720825, 0.210612297058<

Approximate f−value = −3.30686864666

 Appendix B 148

APPENDIX C
C 5 C

This appendix lists the Mathematica code for Chapter 5.

149

A First Look

We can use SparseArray to efficiently store our matrix A:

n = 20000;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

We may also test to see how long it takes to generate A and how much memory it takes to store (in MB):

n = 20000;
8Timing@A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;D,

ByteCount@ADê1048576 êê
N<

881.656 Second, Null<, 4.30689<

Here is the sparsity pattern of A:

ArrayPlot@A, ColorRules → 80 −> White, _ −> Black<D

Quadratic Forms

Example plot of the quadratic form which has the form of a paraboloid:

A = 883, 2<, 82, 6<<;
b = 882<, 8−8<<;
c = 0;

f@x_D :=
1
cccc
2

 Transpose@xD.A.x − Transpose@bD.x + c;

Plot3D@f@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<D;

The contour plot of the region above:

ContourPlot@f@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<,
ContourShading → False, Contours → 20, PlotPoints → 45D

The gradient field for the region above:

 Appendix C 150

<< Graphics`PlotField`

PlotGradientFieldA−2 x + 8 y +
1
cccc
2
Hx H3 x + 2 yL + y H2 x + 6 yLL, 8x, −4, 6<,

8y, −6, 4<, Frame → True, HeadLength → 0.008, HeadWidth → 0.9E

Steepest Descent

In Mathematica, FindMinimum performs a type of steepest descent search automatically:

<< Optimization`UnconstrainedProblems`

FindMinimumPlotA−2 x + 8 y +
1
cccc
2
Hx H3 x + 2 yL + y H2 x + 6 yLL, 88x, −2<, 8y, −2<<E

-2 -1 0 1 2
-2

-1.8

-1.6

-1.4

-1.2

88−10., 8x → 2., y → −2.<<,
8Steps → 9, Function → 10, Gradient → 10<, h ContourGraphics h<

 Appendix C 151

ü Nonoptimized Version

H∗ maxiters, the maximum number of iterations ∗L
maxiter = 22;
H∗ i, our counter ∗L
i = 0;
H∗ x0, our initial guess for the solution x in Ax = b. ∗L
x0 = 88−2.<, 8−2.<<;
H∗ xi, the approximate solution to x in Ax = b ∗L
xi = x0;

Print@"Input: ", Subscript@x, 0D, " = ", x0 êê MatrixFormD;
H∗ perform method of steepest descent

until maxiter loops have been completed ∗L
WhileAi ≤ maxiter,

H∗ calculate the residual ∗L
ri = b − A.xi;
H∗ find the appropriate alpha using line search ∗L

alphai = FlattenA Transpose@riD.ri
ccc
Transpose@riD.A.ri

EP1T;

H∗ update the approximate answer ∗L
xi = xi + alphai ∗ ri;
Print@"Iteration ", i, "\n−−−−−−−−−−−−"D;
Print@Subscript@r, iD, " = ", ri êê MatrixFormD;
Print@Subscript@α, iD, " = ", alphaiD;
H∗ increment counter ∗L
i++;
Print@Subscript@x, iD, " = ", xi êê MatrixFormD;
E;

Input: x0 = J −2.
−2.

N

Iteration 0
−−−−−−−−−−−−

r0 = J 12.
8.

N

α0 = 0.173333

x1 = J 0.08
−0.613333

N

Iteration 1
−−−−−−−−−−−−

r1 = J 2.98667
−4.48

N

α1 = 0.309524

 Appendix C 152

x2 = J 1.00444
−2.

N

Iteration 2
−−−−−−−−−−−−

r2 = J 2.98667
1.99111

N

α2 = 0.173333

x3 = J 1.52213
−1.65487

N

Iteration 3
−−−−−−−−−−−−

r3 = J 0.743348
−1.11502

N

α3 = 0.309524

x4 = J 1.75222
−2.

N

Iteration 4
−−−−−−−−−−−−

r4 = J 0.743348
0.495565

N

α4 = 0.173333

x5 = J 1.88106
−1.9141

N

Iteration 5
−−−−−−−−−−−−

r5 = J 0.185011
−0.277517

N

α5 = 0.309524

x6 = J 1.93833
−2.

N

Iteration 6
−−−−−−−−−−−−

r6 = J 0.185011
0.123341

N

α6 = 0.173333

x7 = J 1.9704
−1.97862

N

Iteration 7
−−−−−−−−−−−−

r7 = J 0.0460472
−0.0690708

N

α7 = 0.309524

 Appendix C 153

x8 = J 1.98465
−2.

N

Iteration 8
−−−−−−−−−−−−

r8 = J 0.0460472
0.0306981

N

α8 = 0.173333

x9 = J 1.99263
−1.99468

N

Iteration 9
−−−−−−−−−−−−

r9 = J 0.0114606
−0.017191

N

α9 = 0.309524

x10 = J 1.99618
−2.

N

Iteration 10
−−−−−−−−−−−−

r10 = J 0.0114606
0.00764043

N

α10 = 0.173333

x11 = J 1.99817
−1.99868

N

Iteration 11
−−−−−−−−−−−−

r11 = J 0.00285243
−0.00427864

N

α11 = 0.309524

x12 = J 1.99905
−2.

N

Iteration 12
−−−−−−−−−−−−

r12 = J 0.00285243
0.00190162

N

α12 = 0.173333

x13 = J 1.99954
−1.99967

N

Iteration 13
−−−−−−−−−−−−

r13 = J 0.000709937
−0.00106491

N

α13 = 0.309524

 Appendix C 154

x14 = J 1.99976
−2.

N

Iteration 14
−−−−−−−−−−−−

r14 = J 0.000709937
0.000473291

N

α14 = 0.173333

x15 = J 1.99989
−1.99992

N

Iteration 15
−−−−−−−−−−−−

r15 = J 0.000176695
−0.000265043

N

α15 = 0.309524

x16 = J 1.99994
−2.

N

Iteration 16
−−−−−−−−−−−−

r16 = J 0.000176695
0.000117797

N

α16 = 0.173333

x17 = J 1.99997
−1.99998

N

Iteration 17
−−−−−−−−−−−−

r17 = J 0.0000439775
−0.0000659663

N

α17 = 0.309524

x18 = J 1.99999
−2.

N

Iteration 18
−−−−−−−−−−−−

r18 = J 0.0000439775
0.0000293184

N

α18 = 0.173333

x19 = J 1.99999
−1.99999

N

Iteration 19
−−−−−−−−−−−−

r19 = J 0.0000109455
−0.0000164183

N

α19 = 0.309524

 Appendix C 155

x20 = J 2.
−2.

N

Iteration 20
−−−−−−−−−−−−

r20 = i
k
jj 0.0000109455
7.29701×10−6

y
{
zz

α20 = 0.173333

x21 = J 2.
−2.

N

Iteration 21
−−−−−−−−−−−−

r21 =
i
k
jjj 2.72422×10−6

−4.08633×10−6
y
{
zzz

α21 = 0.309524

x22 = J 2.
−2.

N

Iteration 22
−−−−−−−−−−−−

r22 =
i
k
jjj 2.72422×10−6

1.81615×10−6
y
{
zzz

α22 = 0.173333

x23 = J 2.
−2.

N

ü Optimized Version

This version has one less matrix-vector product.

 Appendix C 156

H∗ maxiters, the maximum number of iterations ∗L
maxiter = 22;
H∗ i, our counter ∗L
i = 0;
H∗ x0, our initial guess for the solution x in Ax = b. ∗L
x0 = 88−2.<, 8−2.<<;
H∗ xi, the approximate solution to x in Ax = b ∗L
xi = x0;
H∗ r0,

we need to calculate r0 to start our iteration using the equation ri =

b − Axi. After every 5 iterations, we update r0 to make
sure floating point roundoff error does not accumulate. ∗L

r0 = b − A.x0;
ri = r0;

Print@"Input: ", Subscript@x, 0D, " = ", x0 êê MatrixFormD;
Print@" ", Subscript@r, 0D, " = ", r0 êê MatrixFormD;
H∗ perform method of steepest descent

until maxiter loops have been completed ∗L
WhileAi ≤ maxiter,

H∗ calculate the matrix−vector product A.ri ∗L
Ari = A.ri;
H∗ find the appropriate alpha using line search ∗L

alphai = FlattenA Transpose@riD.ri
cc
Transpose@riD.Ari

EP1T;

H∗ update the approximate answer ∗L
xi = xi + alphai ∗ ri;
H∗ If i is divisible by 5 ∗L
If@Mod@i, 5D m 0,
H∗ Find the residual the old way ∗L
ri = b − A.xi,
H∗ Keep using the optimized residual otherwise ∗L
ri = ri − alphai ∗ Ari
D;
Print@"Iteration ", i, "\n−−−−−−−−−−−−"D;
Print@Subscript@α, iD, " = ", alphaiD;
H∗ increment counter ∗L
i++;
Print@Subscript@x, iD, " = ", xi êê MatrixFormD;
Print@Subscript@r, iD, " = ", ri êê MatrixFormD;
E;

Input: x0 = J −2.
−2.

N

r0 = J 12.
8.

N

Iteration 0
−−−−−−−−−−−−

 Appendix C 157

α0 = 0.173333

x1 = J 0.08
−0.613333

N

r1 = J 2.98667
−4.48

N

Iteration 1
−−−−−−−−−−−−

α1 = 0.309524

x2 = J 1.00444
−2.

N

r2 = J 2.98667
1.99111

N

Iteration 2
−−−−−−−−−−−−

α2 = 0.173333

x3 = J 1.52213
−1.65487

N

r3 = J 0.743348
−1.11502

N

Iteration 3
−−−−−−−−−−−−

α3 = 0.309524

x4 = J 1.75222
−2.

N

r4 = J 0.743348
0.495565

N

Iteration 4
−−−−−−−−−−−−

α4 = 0.173333

x5 = J 1.88106
−1.9141

N

r5 = J 0.185011
−0.277517

N

Iteration 5
−−−−−−−−−−−−

α5 = 0.309524

x6 = J 1.93833
−2.

N

r6 = J 0.185011
0.123341

N

Iteration 6
−−−−−−−−−−−−

 Appendix C 158

α6 = 0.173333

x7 = J 1.9704
−1.97862

N

r7 = J 0.0460472
−0.0690708

N

Iteration 7
−−−−−−−−−−−−

α7 = 0.309524

x8 = J 1.98465
−2.

N

r8 = J 0.0460472
0.0306981

N

Iteration 8
−−−−−−−−−−−−

α8 = 0.173333

x9 = J 1.99263
−1.99468

N

r9 = J 0.0114606
−0.017191

N

Iteration 9
−−−−−−−−−−−−

α9 = 0.309524

x10 = J 1.99618
−2.

N

r10 = J 0.0114606
0.00764043

N

Iteration 10
−−−−−−−−−−−−

α10 = 0.173333

x11 = J 1.99817
−1.99868

N

r11 = J 0.00285243
−0.00427864

N

Iteration 11
−−−−−−−−−−−−

α11 = 0.309524

x12 = J 1.99905
−2.

N

r12 = J 0.00285243
0.00190162

N

Iteration 12
−−−−−−−−−−−−

 Appendix C 159

α12 = 0.173333

x13 = J 1.99954
−1.99967

N

r13 = J 0.000709937
−0.00106491

N

Iteration 13
−−−−−−−−−−−−

α13 = 0.309524

x14 = J 1.99976
−2.

N

r14 = J 0.000709937
0.000473291

N

Iteration 14
−−−−−−−−−−−−

α14 = 0.173333

x15 = J 1.99989
−1.99992

N

r15 = J 0.000176695
−0.000265043

N

Iteration 15
−−−−−−−−−−−−

α15 = 0.309524

x16 = J 1.99994
−2.

N

r16 = J 0.000176695
0.000117797

N

Iteration 16
−−−−−−−−−−−−

α16 = 0.173333

x17 = J 1.99997
−1.99998

N

r17 = J 0.0000439775
−0.0000659663

N

Iteration 17
−−−−−−−−−−−−

α17 = 0.309524

x18 = J 1.99999
−2.

N

r18 = J 0.0000439775
0.0000293184

N

Iteration 18
−−−−−−−−−−−−

 Appendix C 160

α18 = 0.173333

x19 = J 1.99999
−1.99999

N

r19 = J 0.0000109455
−0.0000164183

N

Iteration 19
−−−−−−−−−−−−

α19 = 0.309524

x20 = J 2.
−2.

N

r20 = i
k
jj 0.0000109455
7.29701×10−6

y
{
zz

Iteration 20
−−−−−−−−−−−−

α20 = 0.173333

x21 = J 2.
−2.

N

r21 =
i
k
jjj 2.72422×10−6

−4.08633×10−6
y
{
zzz

Iteration 21
−−−−−−−−−−−−

α21 = 0.309524

x22 = J 2.
−2.

N

r22 =
i
k
jjj 2.72422×10−6

1.81615×10−6
y
{
zzz

Iteration 22
−−−−−−−−−−−−

α22 = 0.173333

x23 = J 2.
−2.

N

r23 =
i
k
jjj 6.78028×10−7

−1.01704×10−6
y
{
zzz

 Appendix C 161

ü Pictures

<< Graphics`Arrow`
H∗ maxiters, the maximum number of iterations ∗L
maxiter = 22;
H∗ i, our counter ∗L
i = 0;
H∗ x0, our initial guess for the solution x in Ax = b. ∗L
x0 = 88−2.<, 8−2.<<;
H∗ xi, the approximate solution to x in Ax = b ∗L
xi = x0;
H∗ graphlist, a list of graphics that illustrate our algorithm ∗L
graphlist =

8ContourPlot@f@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<, ContourShading → False,
Contours → 20, PlotPoints → 45, DisplayFunction → IdentityD,

Graphics@8Disk@Flatten@x0D, 0.1D, Text@"x0", Flatten@x0D, 80, 1<D<D<;

Print@"Input: ", Subscript@x, 0D, " = ", x0 êê MatrixFormD;
H∗ perform method of steepest descent

until maxiter loops have been completed ∗L
WhileAi ≤ maxiter,

H∗ calculate the residual ∗L
ri = b − A.xi;
H∗ find the appropriate alpha using line search ∗L

alphai = FlattenA Transpose@riD.ri
ccc
Transpose@riD.A.ri

EP1T;

H∗ keep the old approximate
answer and update the approximate answer ∗L

oldxi = xi;
xi = xi + alphai ∗ ri;
Print@"Iteration ", i, "\n−−−−−−−−−−−−"D;
Print@Subscript@r, iD, " = ", ri êê MatrixFormD;
Print@Subscript@α, iD, " = ", alphaiD;
H∗ increment counter ∗L
i++;
Print@Subscript@x, iD, " = ", xi êê MatrixFormD;
H∗AppendTo@graphlist,Graphics@Arrow@Flatten@oldxiD,

Flatten@xiD,HeadWidth→0.3,HeadLength→0.02DDD;∗L
AppendTo@graphlist, Graphics@Line@8Flatten@oldxiD, Flatten@xiD<DDD;
Show@graphlist, DisplayFunction → $DisplayFunctionD;
E;

Print@"Final Graphic\n−−−−−−−−−−−−−"D;
AppendTo@graphlist, Graphics@Disk@Flatten@xiD, 0.1DDD;
Show@graphlist, DisplayFunction → $DisplayFunctionD;

Input: x0 = J −2.
−2.

N

 Appendix C 162

Iteration 0
−−−−−−−−−−−−

r0 = J 12.
8.

N

α0 = 0.173333

x1 = J 0.08
−0.613333

N

Iteration 1
−−−−−−−−−−−−

r1 = J 2.98667
−4.48

N

α1 = 0.309524

x2 = J 1.00444
−2.

N

Iteration 2
−−−−−−−−−−−−

r2 = J 2.98667
1.99111

N

α2 = 0.173333

x3 = J 1.52213
−1.65487

N

Iteration 3
−−−−−−−−−−−−

r3 = J 0.743348
−1.11502

N

α3 = 0.309524

x4 = J 1.75222
−2.

N

Iteration 4
−−−−−−−−−−−−

r4 = J 0.743348
0.495565

N

α4 = 0.173333

x5 = J 1.88106
−1.9141

N

Iteration 5
−−−−−−−−−−−−

r5 = J 0.185011
−0.277517

N

α5 = 0.309524

x6 = J 1.93833
−2.

N

 Appendix C 163

Iteration 6
−−−−−−−−−−−−

r6 = J 0.185011
0.123341

N

α6 = 0.173333

x7 = J 1.9704
−1.97862

N

Iteration 7
−−−−−−−−−−−−

r7 = J 0.0460472
−0.0690708

N

α7 = 0.309524

x8 = J 1.98465
−2.

N

Iteration 8
−−−−−−−−−−−−

r8 = J 0.0460472
0.0306981

N

α8 = 0.173333

x9 = J 1.99263
−1.99468

N

Iteration 9
−−−−−−−−−−−−

r9 = J 0.0114606
−0.017191

N

α9 = 0.309524

x10 = J 1.99618
−2.

N

Iteration 10
−−−−−−−−−−−−

r10 = J 0.0114606
0.00764043

N

α10 = 0.173333

x11 = J 1.99817
−1.99868

N

Iteration 11
−−−−−−−−−−−−

r11 = J 0.00285243
−0.00427864

N

α11 = 0.309524

x12 = J 1.99905
−2.

N

 Appendix C 164

Iteration 12
−−−−−−−−−−−−

r12 = J 0.00285243
0.00190162

N

α12 = 0.173333

x13 = J 1.99954
−1.99967

N

Iteration 13
−−−−−−−−−−−−

r13 = J 0.000709937
−0.00106491

N

α13 = 0.309524

x14 = J 1.99976
−2.

N

Iteration 14
−−−−−−−−−−−−

r14 = J 0.000709937
0.000473291

N

α14 = 0.173333

x15 = J 1.99989
−1.99992

N

Iteration 15
−−−−−−−−−−−−

r15 = J 0.000176695
−0.000265043

N

α15 = 0.309524

x16 = J 1.99994
−2.

N

Iteration 16
−−−−−−−−−−−−

r16 = J 0.000176695
0.000117797

N

α16 = 0.173333

x17 = J 1.99997
−1.99998

N

Iteration 17
−−−−−−−−−−−−

r17 = J 0.0000439775
−0.0000659663

N

α17 = 0.309524

x18 = J 1.99999
−2.

N

 Appendix C 165

Iteration 18
−−−−−−−−−−−−

r18 = J 0.0000439775
0.0000293184

N

α18 = 0.173333

x19 = J 1.99999
−1.99999

N

Iteration 19
−−−−−−−−−−−−

r19 = J 0.0000109455
−0.0000164183

N

α19 = 0.309524

x20 = J 2.
−2.

N

Iteration 20
−−−−−−−−−−−−

r20 = i
k
jj 0.0000109455
7.29701×10−6

y
{
zz

α20 = 0.173333

x21 = J 2.
−2.

N

Iteration 21
−−−−−−−−−−−−

r21 =
i
k
jjj 2.72422×10−6

−4.08633×10−6
y
{
zzz

α21 = 0.309524

x22 = J 2.
−2.

N

Iteration 22
−−−−−−−−−−−−

r22 =
i
k
jjj 2.72422×10−6

1.81615×10−6
y
{
zzz

α22 = 0.173333

x23 = J 2.
−2.

N

 Appendix C 166

ü Convergence of Steepest Descent

ü Case when ei is an eigenvector of our system A x = b

When x0 = H-3, 0.5LT we have convergence on the first iteration since:

r0 = b − A.88−3<, 80.5<<;

alpha0 = FlattenA Transpose@r0D.r0
ccc
Transpose@r0D.A.r0

EP1T;

x1 = x0 + alpha0 ∗ r0;
Print@Subscript@r, 0D, " = ", r0 êê MatrixFormD;
Print@Subscript@α, 0D, " = ", alpha0D;
Print@Subscript@x, 1D, " = ", x1 êê MatrixFormD;

r0 = J 10.
−5.

N

α0 = 0.5

x1 = J 2.
−2.

N

And for the error term ei we have:

e0 = x0 − 882<, 8−2<<;

e1 = e0 + FlattenA Transpose@r0D.r0
ccc
Transpose@r0D.A.r0

EP1T∗ r0;

Print@Subscript@e, 0D, " = ", e0 êê MatrixFormD;
Print@Subscript@e, 1D, " = ", e1 êê MatrixFormD;

e0 = J −5.
2.5

N

e1 = J 0.
0.

N

This is illustrated in the following picture:

<< Graphics`Arrow`
Show@
8ContourPlot@f@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<, ContourShading → False,

Contours → 20, PlotPoints → 45, DisplayFunction → IdentityD,
Graphics@8Disk@8−3, 0.5<, 0.1D, Arrow@8−3, 0.5<, 82, −2<D<D<,

DisplayFunction → $DisplayFunctionD;

 Appendix C 167

The Method of Conjugate Directions

H∗ n, as in n ∗L
n = 2;
H∗ x0, our initial guess for the solution x in Ax = b. ∗L
x0 = 88−2.<, 8−2.<<;
xi = x0;
H∗ ui, our set of linearly independent

vectors. A judicious choice is the axes of n ∗L
ui = Flatten@Partition@IdentityMatrix@nD, 82, 1<D, 1D;
H∗ di, the list of search directions ∗L
di = 8uiP1T<;

H∗ perform method of Conjugate Directions i = n − 1 ∗L
ForAi = 0, i < n − 1, i++,

H∗ calculate the residual ∗L
ri = b − A.xi;
H∗ find the appropriate alpha ∗L

alphai = FlattenA Transpose@diPi + 1TD.ri
ccc
Transpose@diPi + 1TD.A.diPi + 1T EP1T;

H∗ update the approximate answer ∗L
xi = xi + alphai ∗ diPi + 1T;
H∗ update the search direction ∗L
AppendToAdi,

uiPi + 1T + ‚
k=0

i

−FlattenA Transpose@uiPi + 1TD.A.diPk + 1T
ccc
Transpose@diPk + 1TD.A.diPk + 1T EP1T∗ diPk + 1TE;

Print@"Iteration ", i, "\n−−−−−−−−−−−−"D;
Print@Subscript@r, iD, " = ", ri êê MatrixFormD;
Print@Subscript@α, iD, " = ", alphaiD;
Print@Subscript@x, i + 1D, " = ", xi êê MatrixFormD;
Print@Subscript@d, i + 1D, " = ", diPi + 1T êê MatrixFormD;
E;

Iteration 0
−−−−−−−−−−−−

r0 = J 12.
8.

N

α0 = 4.

x1 = J 2.
−2.

N

d1 = J 1
0
N

 Appendix C 168

The Method of Conjugate Gradients

ü Without Pictures

H∗ maxiters, the maximum number of iterations ∗L
imax = 2;
H∗ i, our counter ∗L
i = 0;
H∗ x0, our initial guess for the solution x in Ax = b. ∗L
x0 = 88−2.<, 8−2.<<;
H∗ xi, the approximate solution to x in Ax = b ∗L
xi = x0;
H∗ di, the directional vector ∗L
di = b − A.x0;
H∗ ri, the residual ∗L
ri = di;

Print@"Input: ", Subscript@x, 0D, " = ", x0 êê MatrixFormD;
Print@"Input: ", Subscript@d, 0D, " = ", di êê MatrixFormD;
Print@"Input: ", Subscript@r, 0D, " = ", ri êê MatrixFormD;
H∗ perform method of steepest descent

until maxiter loops have been completed ∗L
WhileAi ≤ imax,

Print@"Iteration ", i, "\n−−−−−−−−−−−−"D;

alphai = FlattenA Transpose@riD.ri
ccc
Transpose@diD.A.di

EP1T;

Print@Subscript@α, iD, " = ", alphaiD;
xi = xi + alphai ∗ di;
Print@Subscript@x, i + 1D, " = ", xi êê MatrixFormD;
riplus1 = ri − alphai ∗ A.di;
Print@Subscript@r, i + 1D, " = ", riplus1 êê MatrixFormD;

betai = FlattenA Transpose@riplus1D.riplus1
cc

Transpose@riD.ri
EP1T;

Print@Subscript@β, i + 1D, " = ", betai êê MatrixFormD;
di = riplus1 + betai ∗ di;
Print@Subscript@d, i + 1D, " = ", di êê MatrixFormD;
ri = riplus1;
H∗ increment counter ∗L
i++;
E;

Input: x0 = J −2.
−2.

N

Input: d0 = J 12.
8.

N

 Appendix C 169

Input: r0 = J 12.
8.

N

Iteration 0
−−−−−−−−−−−−

α0 = 0.173333

x1 = J 0.08
−0.613333

N

r1 = J 2.98667
−4.48

N

β1 = 0.139378

d1 = J 4.6592
−3.36498

N

Iteration 1
−−−−−−−−−−−−

α1 = 0.412088

x2 = J 2.
−2.

N

r2 =
i
k
jjj −4.44089×10−16

−8.88178×10−16
y
{
zzz

β2 = 3.40137×10−32

d2 =
i
k
jjj −4.44089×10−16

−8.88178×10−16
y
{
zzz

Iteration 2
−−−−−−−−−−−−

α2 = 0.142857

x3 = J 2.
−2.

N

r3 = J 0.
0.

N

β3 = 0.

d3 = J 0.
0.

N

 Appendix C 170

ü With Pictures

<< Graphics`Arrow`
H∗ maxiters, the maximum number of iterations ∗L
imax = 2;
H∗ i, our counter ∗L
i = 0;
H∗ x0, our initial guess for the solution x in Ax = b. ∗L
x0 = 88−2.<, 8−2.<<;
H∗ xi, the approximate solution to x in Ax = b ∗L
xi = x0;
H∗ di, the directional vector ∗L
di = b − A.x0;
H∗ ri, the residual ∗L
ri = di;
H∗ graphlist, a list of graphics that illustrate our algorithm ∗L
graphlist =

8ContourPlot@f@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<, ContourShading → False,
Contours → 20, PlotPoints → 45, DisplayFunction → IdentityD,

Graphics@8Disk@Flatten@x0D, 0.1D, Text@"x0", Flatten@x0D, 80, 1<D<D<;

Print@"Input: ", Subscript@x, 0D, " = ", x0 êê MatrixFormD;
Print@"Input: ", Subscript@d, 0D, " = ", di êê MatrixFormD;
Print@"Input: ", Subscript@r, 0D, " = ", ri êê MatrixFormD;
H∗ perform method of steepest descent

until maxiter loops have been completed ∗L
WhileAi ≤ imax,

H∗ we need to keep the old value of xi just to graph it ∗L
oldxi = xi;
Print@"Iteration ", i, "\n−−−−−−−−−−−−"D;

alphai = FlattenA Transpose@riD.ri
ccc
Transpose@diD.A.di

EP1T;

Print@Subscript@α, iD, " = ", alphaiD;
xi = xi + alphai ∗ di;
Print@Subscript@x, i + 1D, " = ", xi êê MatrixFormD;
riplus1 = ri − alphai ∗ A.di;
Print@Subscript@r, i + 1D, " = ", riplus1 êê MatrixFormD;

betai = FlattenA Transpose@riplus1D.riplus1
cc

Transpose@riD.ri
EP1T;

Print@Subscript@β, i + 1D, " = ", betai êê MatrixFormD;
di = riplus1 + betai ∗ di;
Print@Subscript@d, i + 1D, " = ", di êê MatrixFormD;
ri = riplus1;
H∗ increment counter ∗L
i++;
H∗ show the change from oldxi to xi ∗L
H∗AppendTo@graphlist,

 Appendix C 171

Graphics@Line@8Flatten@oldxiD,Flatten@xiD<DDD;∗L
AppendTo@graphlist, Graphics@Arrow@Flatten@oldxiD, Flatten@xiDDDD;
Show@graphlist, DisplayFunction → $DisplayFunctionD;
E;

Print@"Final Graphic\n−−−−−−−−−−−−−"D;
AppendTo@graphlist, Graphics@Disk@Flatten@xiD, 0.1DDD;
Show@graphlist, DisplayFunction → $DisplayFunctionD;

Input: x0 = J −2.
−2.

N

Input: d0 = J 12.
8.

N

Input: r0 = J 12.
8.

N

Iteration 0
−−−−−−−−−−−−

α0 = 0.173333

x1 = J 0.08
−0.613333

N

r1 = J 2.98667
−4.48

N

β1 = 0.139378

d1 = J 4.6592
−3.36498

N

Iteration 1
−−−−−−−−−−−−

α1 = 0.412088

x2 = J 2.
−2.

N

r2 =
i
k
jjj −4.44089×10−16

−8.88178×10−16
y
{
zzz

β2 = 3.40137×10−32

d2 =
i
k
jjj −4.44089×10−16

−8.88178×10−16
y
{
zzz

Iteration 2
−−−−−−−−−−−−

α2 = 0.142857

x3 = J 2.
−2.

N

r3 = J 0.
0.

N

β3 = 0.

 Appendix C 172

d3 = J 0.
0.

N

Final Graphic
−−−−−−−−−−−−−

ü Stopping Criteria

An approximation to the condition number for An:

224737
ccccccccccccccccccc

2
êê N

112369.

The number of iterations (k) that will give us 10 digits of our answer:

CeilingA
è!!!!!!!!!!!!!!!

2 ∗ 105

ccccccccccccccccccccccc
2

 LogA 2
cccccccccccccc
10−11

EE

5819

Preconditioned Conjugate Gradient

The matrix in our example problem has eigenvalues shown below:

Eigenvalues@AD

87, 2<

The condition number for A in our sample problem:

Max@Eigenvalues@ADDê Min@Eigenvalues@ADD êê N

3.5

ü Choices of a Preconditioner

Consider our sample problem preconditioned by the diagonal matrix:

M = DiagonalMatrix@Tr@A, ListDD;
MA = Inverse@MD.A

991, 2
cccc
3
=, 9 1cccc

3
, 1==

The condition number for our preconditioned problem:

 Appendix C 173

Max@Eigenvalues@MADDê Min@Eigenvalues@MADD êê N

2.78361

Plot the quadratic form:

g@x_D :=
1
cccc
2

 Transpose@xD.MA.x − Transpose@Inverse@MD.bD.x + c;

Plot3D@g@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<D;

The contour plot of the above:

ContourPlot@g@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<,
ContourShading → False, Contours → 20, PlotPoints → 45D

Let's precondition our matrix using Cholesky factorization:

M = CholeskyDecomposition@AD;
MA = Inverse@MD.A

99−2$%%%%%%%%%2
ccccccc
21

+ è!!!3 , −2$%%%%%%6cccc
7

+
2

ccccccccccè!!!3
=, 9$%%%%%%6cccc

7
, 3$%%%%%%6cccc

7
==

The condition number for our preconditioned problem:

Max@Eigenvalues@MADDê Min@Eigenvalues@MADD êê N

1.24722

Plot the quadratic form:

h@x_D :=
1
cccc
2

 Transpose@xD.MA.x − Transpose@Inverse@MD.bD.x + c;

Plot3D@g@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<D;

The contour plot of the above:

ContourPlot@h@88x<, 8y<<D, 8x, −4, 6<, 8y, −6, 4<,
ContourShading → False, Contours → 20, PlotPoints → 45D

By applying the preconditioner D to our SIAM problem we have reduced the condition number to
approximately 4.45. Using this we can find the number of iterations (k) needed to get 10 digits of our
answer

CeilingA
è!!!!!!!!!!!!

4.45
ccccccccccccccccccc

2
 LogA 2

cccccccccccccc
10−11

EE

28

 Appendix C 174

ü Algorithm 5.4

PreconditionedConjugateGradient@A_, b_, M_, x0_, maxiters_,
prec_, epsilon_D := ModuleA8b0 = SetPrecision@b, prec + 5D,

i = 0, r0, d0, alphai, xi, ri, riplus1, betai, mInv<,
r0 = b0 − A.x0;
ri = r0;
mInv = Inverse@MD;
d0 = mInv.r0;
di = d0;
xi = x0;
WhileAi < maxiters,

alphai = FlattenA Transpose@riD.mInv.ri
cc

Transpose@diD.A.di
EP1T;

xi = xi + alphai ∗ di;
riplus1 = ri − alphai ∗ A.di;
H∗ termination test ∗L
If@Flatten@Transpose@riplus1D.riplus1DP1T ≤ epsilon, Break@DD;

betai = FlattenA Transpose@riplus1D.mInv.riplus1
cc

Transpose@riD.mInv.ri
EP1T;

di = mInv.riplus1 + betai ∗ di;
ri = riplus1;
i++;
E;

Print@"Approximate Solution = ", N@xiP1, 1T, precDD;
Print@"Number of Iterations = ", iD;
E;

ü n = 200

n = 200;
b = Table@80<, 8n<D;
bP1T = 81<;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

M = DiagonalMatrix@Table@APi, iT, 8i, n<DD;
H∗M=CholeskyDecomposition@AD;∗L
x0 = Table@8Random@IntegerD<, 8n<D;
PreconditionedConjugateGradient@A, b, M, x0, 5819, 100, 10−30D

Approximate Solution =

0.7244129798828047749629137657930544011637172316443128329138533

Number of Iterations = 17

 Appendix C 175

LinearSolve solves the problem above quickly and easily. This is just to make sure the above solution
is correct.

N@LinearSolve@A, bDP1, 1T, 30D

0.724412979882804776010067247620

ü Algorithm 5.4 (Optimized)

KindaOptimizedPreconditionedConjugateGradient@
A_, b_, M_, x0_, maxiters_, prec_, epsilon_D :=

ModuleA8b0 = SetPrecision@b, prec + 5D, i = 0, r0, d0, alphai,

xi, ri, riplus1, betai, mInv, trmr, ad, mr1<,
r0 = b0 − A.x0;
ri = r0;
mInv = Inverse@MD;
d0 = mInv.r0;
di = d0;
xi = x0;
WhileAi < maxiters,

H∗ this saves us some matrix−vector multiplications ∗L
trmr = Transpose@riD.mInv.ri;
ad = A.di;

alphai = FlattenA trmr
ccc
Transpose@diD.ad

EP1T;

xi = xi + alphai ∗ di;
riplus1 = ri − alphai ∗ ad;
H∗ save us some more work ∗L
mr1 = mInv.riplus1;
tr1 = Transpose@riplus1D;
H∗ termination test ∗L
If@Flatten@tr1.riplus1DP1T ≤ epsilon, Break@DD;

betai = FlattenA tr1.mr1
cccccccccccccccccccccc

trmr
EP1T;

di = mr1 + betai ∗ di;
ri = riplus1;
i++;
E;

Print@"Approximate Solution = ", N@xiP1, 1T, precDD;
Print@"Number of Iterations = ", iD;
E;

 Appendix C 176

OptimizedPreconditionedConjugateGradient@
A_, b_, M_, x0_, maxiters_, prec_, epsilon_D :=

ModuleA8b0 = SetPrecision@b, prec + 5D, i = 0, d0, alphai,

xi = x0, ri, riplus1, betai, mInv, trmr, ad, mr1<,
ri = b0 − A.xi;
mInv = SparseArray@Inverse@MDD;
di = mInv.ri;
WhileAi < maxiters,

H∗ this saves us some matrix−vector multiplications ∗L
trmr = Transpose@riD.mInv.ri;
ad = A.di;

alphai = FlattenA trmr
ccc
Transpose@diD.ad

EP1T;

xi = xi + alphai ∗ di;
H∗ remember this is the step that causes the most error;

for a large number of iterations we have to recalculate
the residual using the tried and true method ∗L

If@Mod@i, 30D m 0, riplus1 = b − A.xi, riplus1 = ri − alphai ∗ adD;
H∗ save us some more work ∗L
mr1 = mInv.riplus1;
tr1 = Transpose@riplus1D;
H∗ termination test ∗L
If@Flatten@tr1.riplus1DP1T ≤ epsilon, Break@DD;

betai = FlattenA tr1.mr1
cccccccccccccccccccccc

trmr
EP1T;

di = mr1 + betai ∗ di;
ri = riplus1;
i++;
E;

Print@"Approximate Solution = ", N@xiP1, 1T, precDD;
Print@"Number of Iterations = ", iD;
E;

ü n = 200

n = 200;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

M = DiagonalMatrix@Table@APi, iT, 8i, n<DD;
x0 = Table@8Random@IntegerD<, 8n<D;
OptimizedPreconditionedConjugateGradient@A, b, M, x0, 5819, 100, 10−30D

Approximate Solution = 0.724412979882804775883613533

Number of Iterations = 17

 Appendix C 177

ü Timing runs

n = 20;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

M = DiagonalMatrix@Table@APi, iT, 8i, n<DD;
x0 = Table@8Random@IntegerD<, 8n<D;
Timing@

OptimizedPreconditionedConjugateGradient@A, b, M, x0, 5819, 100, 10−12DD

Approximate Solution =

0.717428927353834458685685607324499508883679174915047170661090186435502265612372

Number of Iterations = 9

80.031 Second, Null<

n = 200;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

M = DiagonalMatrix@Table@APi, iT, 8i, n<DD;
x0 = Table@8Random@IntegerD<, 8n<D;
Timing@

OptimizedPreconditionedConjugateGradient@A, b, M, x0, 5819, 100, 10−12DD

Approximate Solution = 0.72441298183089251997154680795555096474064884558675896

Number of Iterations = 10

81.719 Second, Null<

n = 2000;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

M = DiagonalMatrix@Table@APi, iT, 8i, n<DD;
x0 = Table@8Random@IntegerD<, 8n<D;
Timing@

OptimizedPreconditionedConjugateGradient@A, b, M, x0, 5819, 100, 10−12DD

81438.47 Second, 11<

 Appendix C 178

I don't have enough memory to run this!

n = 20000;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

M = DiagonalMatrix@Table@APi, iT, 8i, n<DD;
x0 = Table@8Random@IntegerD<, 8n<D;
Timing@

OptimizedPreconditionedConjugateGradient@A, b, M, x0, 5819, 100, 10−12DD

No more memory available.
Mathematica kernel has shut down.
Try quitting other applications and then retry.

ü The Mathematica "one-liner"

Mathematica has built in PCG using LinearSolve:

n = 20000;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

diagonal = Table@APi, iT, 8i, n<D;
prec = 50;
b = SetPrecision@b, prec + 5D;
x = LinearSolveAA, b, Method → 9Krylov, Method → ConjugateGradient,

Preconditioner →
i
k
jjj

#
cccccccccccccccccccccccc
diagonal

&y
{
zzz, Tolerance → 10−prec−1=E;

N@xP1T, 50D

0.72507834626840116746868771925116096886918059447951

Interval Arithmetic

SIAM Book Pretty Interval Printer

 Appendix C 179

DigitsAgreeCount@a_, b_D := Hprec = Ceiling@Min@Precision ê@ 8a, b<D;
88ad, ae<, 8bd, be<< = RealDigits@#, 10, precD & ê@ 8a, b<;
If@ae ≠ be fi a b ≤ 0, Return@0DD; If@ad m bd, Return@Length@adDD;
88com<< = Position@MapThread@Equal, 8ad, bd<D, False, 1, 1D − 1; comL;

DigitsAgreeCount@Interval@8a_, b_<DD := DigitsAgreeCount@a, bD;
IntervalForm@Interval@8a_, b_<DD :=

HIf@Hcom = DigitsAgreeCount@a, bDL m 0, Return@Interval@8a, b<DD;
start = Sign@aD N@FromDigits@8adPRange@comT, 1<, comD;
8low, up< = SequenceForm @@ Take@#, 8com + 1, prec<D & ê@ 8ad, bd<;
If@ae m 0, start ê= 10; ae++D; SequenceForm@

DisplayForm@SubsuperscriptBox@NumberForm@start, low, upD, If@ae ≠ 1,
Sequence @@ 8" × ", DisplayForm@SuperscriptBox@10, ae − 1D<, ""DDL

n = 20000;
b = Table@0, 8n<D;
bP1T = 1;
A =

SparseArray@88i_, i_< → Prime@iD<, nD + H# + Transpose@#DL &@SparseArray@
Flatten@Table@8i, i + 2j< → 1, 8i, n − 1<, 8j, 0, Log@2., n − iD<D, nD;

diagonal = Table@APi, iT, 8i, n<D;
prec = 100;
b = SetPrecision@b, prec + 5D;
x = LinearSolveAA, b, Method → 9Krylov, Method → ConjugateGradient,

Preconditioner →
i
k
jjj #

cccccccccccccccccccccccc
diagonal

&y
{
zzz, Tolerance → 10−prec−1=E;

N@xP1T, 100D

0.7250783462684011674686877192511609688691805944795089578781647692077731g

899945962835735923927864782020

xP1T + Interval@8−1, 1<D Norm@b − A.Interval ê@ xD êê IntervalForm

0.7250783462684011674686877192511609688691805944795082162
96996

 Appendix C 180

R

1. The SIAM 100-Dollar 100-Digit Challenge. World Wide Web, December 2006.
URL http://www.win.tue.nl/casa/meetings/special/siamcontest/. 23

2. Genetic algorithm. World Wide Web, February 2007. URL http://en.
wikipedia.org/wiki/Genetic_algorithm. 42, 43

3. Photon. World Wide Web, February 2007. URL http://en.wikipedia.org/
wiki/Photon. 21

4. David Bau III and Lloyd N. Trefethen. Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, 1997. 2, 4, 5, 83, 85, 87, 91

5. Paolo Bientinesi, Brian Gunter, and Robert A. Van De Geijn. Families of
Algorithms Related to the Inversion of a Symmetric Positive Definite Matrix.
World Wide Web, August 2006. URL http://www.cs.utexas.edu/users/
flame/pubs/toms_spd.pdf. 65

6. Folkmar Bornemann, Dick Laruie, Stan Wagon, and Jörg Waldvogel. The
SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing.
SIAM, 2004. vii, 7, 8, 22, 29, 30, 31, 34, 35, 38, 41, 43, 46, 47, 53, 56, 59, 60, 61, 62,
64, 65, 86, 91, 93

7. Folkmar Bornemann, Dick Laruie, Stan Wagon, and Jörg Waldvogel.
The SIAM 100-Digit Challenge Book. World Wide Web, 2004. URL
http://www-m3.ma.tum.de/m3old/bornemann/challengebook/. 94

8. James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Berkeley, 1997. 83

9. Peter Deuflhard and Andreas Hohmann. Numerical Analysis in Modern
Scientific Computing: An Introduction. Springer-Verlag, New York, 2nd edition,
2003. 85

10. Eldon Hansen and G. William Walster. Global Optimization Using Interval
Analysis, volume 264 of Monograph and Textbooks in Pure and Applied Mathematics.
Marcel Dekker, Inc., New York, 2nd edition, 2004. 9, 10, 11, 12, 18, 20, 56, 61

181

http://www.win.tue.nl/casa/meetings/special/siamcontest/
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Photon
http://en.wikipedia.org/wiki/Photon
http://www.cs.utexas.edu/users/flame/pubs/toms_spd.pdf
http://www.cs.utexas.edu/users/flame/pubs/toms_spd.pdf
http://www-m3.ma.tum.de/m3old/bornemann/challengebook/

References 182

11. R. Baker Kearfott. Rigorous Global Search: Continuous Problems, volume 13 of
Nonconvex Optimization and Its Applications. Kluwer Academic Publishers,
Dordrect, 1996. 56, 58, 60, 61

12. Sun Microsystems. Interval Arithmetic in High Performance Technical
Computing. World Wide Web, September 2002. URL http://www.sun.com/
processors/whitepapers/ia12_wp.pdf. 10

13. Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966. 9,
12, 17, 18, 19, 51, 53, 55, 56

14. Ramon E. Moore. A Test for Existence of Solutions to Nonlinear Systems.
SIAM Journal on Numerical Analysis, 14(4):611–615, September 1977. 57, 58, 59

15. Arnold Neumair. Interval Methods for Systems of Equations, volume 37 of
Encyclopedia of Mathematics and Its Applications. Cambridge University Press,
Cambridge, U.K., 1990. 57

16. Edward R. Scheinerman. Mathematics, A Discrete Introduction. Brooks & Cole,
Pacific Grove, 2000. 5

17. Jonathan R. Shewchuk. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. World Wide Web, August 1994. URL http:
//www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf. 65,
66, 67, 68, 70, 71, 73, 76, 78, 79, 81, 82, 87, 88, 89

18. Lloyd Trefethen. A Hundred-Dollar, Hundred-Digit challenge. SIAM News, 35
(1), 2002. URL http://www.siam.org/news/news.php?id=388. iii, 6

19. Henk A. van der Vorst. Iterative Krylov Methods for Large Linear Systems.
Cambridge Monographs on Applied and Computation Mathematics.
Cambridge University Press, Cambridge, U.K., 2003. 81, 83

20. Eric W. Weisstein. Positive definite matrix. World Wide Web, February 2007.
URL http://mathworld.wolfram.com/PositiveDefiniteMatrix.html. 65

http://www.sun.com/processors/whitepapers/ia12_wp.pdf
http://www.sun.com/processors/whitepapers/ia12_wp.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.siam.org/news/news.php?id=388
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Algorithms
	Introduction
	What is Numerical Analysis?
	The 100-Dollar 100-Digit Challenge

	Interval Analysis
	A Little Background
	Interval Numbers
	Interval Arithmetic: Notations & Relations
	Rounded-Interval Arithmetic
	Functions of Intervals
	Importance

	One Photon, Infinite Mirrors
	Estimating the Photon's Path
	Reliable Reflections

	Hidden Complexity
	Survival of the Fittest
	Interval Arithmetic
	Search & Destroy
	Newton & Krawczyk

	A Daunting Matrix
	A First Look
	Quadratic Forms
	Steepest Descent
	The Method of Conjugate Directions
	Conjugacy
	Generating the Search Directions

	The Method of Conjugate Gradients
	Stopping Criteria

	Preconditioned Conjugate Gradient
	Interval Arithmetic

	Conclusion
	Chapter 3 Code
	Chapter 4 Code
	Chapter 5 Code
	References

