The SIAM 100.0000000-Digit Challenge: A Study in High Accuracy Numerical Computing Using Interval Analysis and Mathematica

James Rohal

The College of Wooster Department of Mathematics

April 30, 2007

Advised By: Dr. Charles Hampton
Second Reader: Dr. Derek Newland

SIAM 100-Dollar 100-Digit Challenge

- Contest created by Lloyd N. Trefethen of Oxford University.
- Officially launched in the February 2002 Issue of SIAM News.
- 10 problems, 1 point per digit, maximum of 10 per problem.
- "Hint: They're hard! If anyone gets 50 digits in total, I will be impressed."

Interval Analysis

- Seldom used in practice.
- Slowness of interval arithmetic packages.
- Slow interval algorithms.
- Difficulty of some interval problems.
- Problems measuring time complexity.
- Benefits are enormous.
- Help solve problems that noninterval methods cannot.
- Guaranteed error bounds provide verifiably correct solutions.
- More reliable since they usually converge.
- Natural stopping criteria.

One Photon, Infinite Mirrors

Problem 1

A photon moving at speed 1 in the $x-y$ plane starts at time $t=0$ at $(x, y)=(1 / 2,1 / 10)$ heading due east. Around every integer lattice point (i, j) in the plane, a circular mirror of radius $1 / 3$ has been erected. How far from $(0,0)$ is the photon at $t=10$?

Difficulties

- This would be hard if this were not an ideal set up.
- Machine error enters quickly since $1 / 10$ is not finitely representable in binary.
- Must have enough precision to guarantee that the reflected photon travels in the right direction!

A Method of Approach

While $t_{\text {rem }}$ is less than 10 do the following:
(1) Find the next mirror of intersection.
(2) Update the photon's position.
(3) Update the photon's velocity.
(9) Reduce the travel time of the photon from $t_{\text {rem }}$.

Find the Next Mirror of Intersection

Consider the sequence of mirrors corresponding to $P+(2 / 3) v$, $P+2 \cdot(2 / 3) v, P+3 \cdot(2 / 3) v, \ldots$ as long as necessary.

Update the Photon's Position and Velocity

Let m be the center of the mirror corresponding to $P+k \cdot(2 / 3) v$, $k \in \mathbb{N}$.
(1) $(P+t v-m) \cdot(P+t v-m)=1 / 9$.
(2) If s is the smallest positive root, then $Q=P+s v$.
(3) H sends $(-a,-b)$ to (a, b), and fixes $(-b, a)$:

$$
H \cdot\left(\begin{array}{cc}
-a & -b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

But $(a, b)=Q-m$.

Results

A Naive Approach

- Put a small interval around each of our inputs and replacing each operation by its corresponding interval version.
- Stop running our algorithm if our interval does not have the required precision and restart algorithm with smaller interval enclosures.

Subtleties

(1) Use $s+2$ digits of working precision when the initial conditions have radius 10^{-s}.
(2) Make sure none of the intermediate results have a precision less than the desired precision.
(3) Check that the solution to our quadratic has no expression of the form $\sqrt{[\text { negative value, positive value] }}$.

Hidden Complexity

Problem 2

What is the global minimum of the function

$$
\begin{aligned}
e^{\sin (50 x)} & +\sin \left(60 e^{y}\right)+\sin (70 \sin x) \\
& +\sin (\sin (80 y))-\sin (10(x+y))+\frac{x^{2}+y^{2}}{4} ?
\end{aligned}
$$

Difficulties

- Can't solve $\left\{f_{x}=0, f_{y}=0\right\}$ easily since there are 2720 critical points.
- Look at the complexity near the origin! At first glance we can only estimate that the minimum lies within
$[-1,1] \times[-1,1]$.

Grid Search

An easy way to get an upper bound on the minimum. This is sped up using compiled Mathematica expressions:

```
grid = Flatten[Table[{x, y}, {x, -1, 1, 0.01}, {y, -1, 1, 0.01}], 1];
fgrid= fcl/@ grid;
{Min[fgrid], Flatten[Extract[grid, Position[fgrid, Min[fgrid]]], 1]}
{-3.24646, {-0.02, 0.21}}
grid = Flatten[Table[{x, y}, {x, -1, 1, 0.001}, {y, -1, 1, 0.001}], 1];
fgrid= fcl/@grid;
{Min[fgrid], Flatten[Extract[grid, Position[fgrid, Min[fgrid]]], 1]}
{-3.30563, {-0.024,0.211}}
```


A Genetic Algorithm

- Inspired by biological evolution such as natural selection.
- Evolution starts from a random population.
- At each generation, the fitness of each individual is evaluated.
- If the fitness function yields a positive result, the individual lives.
- The remaining population is used in the next iteration.

Survival of the Fittest

- The points that survive each generation are called parents.
- The new points introduced at each generation are called children.
- Our fitness function evaluates each point and checks whether it is less than the upper bound.

Search \& Destroy

Subdivide R into smaller rectangles and retain only those rectangles T which pass the following conditions.
$f[T]=\{f(t): t \in T\}$.
(1) $f[T]$ is an interval whose left end is less than or equal to the current upper bound on the absolute minimum.
(2) $f_{x}[T]$ is an interval whose left end is negative and right end is positive.
(3) $f_{y}[T]$ is an interval whose left end is negative and right end is positive.

Search \& Destroy

A tolerance $\varepsilon=10^{-12}$ yields 12 digits after 47 iterations.

Bound $=-3.24$

Bound $=-3.24$

Bound $=-3.24$

Bound $=-3.24$

Bound $=-3.2757$

Bound $=-3.2917$

Newton Operator

Definition

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable and F is the interval extension of f, then the Newton operator on the n-dimensional box X is

$$
N(X):=m(X)-J^{-1} \cdot F(m(X)),
$$

where J is the interval Jacobian

$$
F^{\prime}(X):=\left(\frac{\partial F_{i}}{\partial x_{j}}(X)\right)_{i j} \quad \text { for } i, j=1,2, \ldots, n
$$

Newton's Method

Start with a rectangle R and for each subrectangle X do the following:

- The Newton condition: check whether $N(X) \subseteq X$ holds. If so, then f has at most one zero in X.
- If $N(X) \cap X=\emptyset$, then there are no zeros in X.
- If neither situation applies, subdivide and try again.

If $N(X) \subseteq X$ holds, then let $X_{1}:=N(X) \cap X$ and repeat using X_{1}. Thus $X_{n} \subseteq X_{n-1} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}$.

Difficulties

- May converge to a real number in $N(X) \cap X$ rather than a root.
- Must approximate the interval value of J^{-1}.
- There may be unresolved roots at the end of our algorithm.
- There is no guarantee that $N(X) \subseteq X$ implies f has a zero in $N(X)$ for higher dimensions of f.

Krawczyk Operator

Definition

Suppose $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable in the open domain D and assume that f and f^{\prime} have continuous interval extensions F and F^{\prime} defined on interval vectors contained in D. Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a finite box contained in D where $X_{1}, X_{2}, \ldots, X_{n}$ are closed bounded real intervals. Then the Krawczyk operator is

$$
K(X):=m(X)-Y F(m(X))+(I-Y J)(X-m(X))
$$

where J is the interval Jacobian, Y is the inverse of the matrix of midpoints of the intervals in J, and I is the $n \times n$ identity matrix.

Krawczyk Method

Let \mathcal{R} denote the set of candidate rectangles.

- If \mathcal{R} contains only one rectangle X, compute $K(X)$.
- If $K(X) \cap X=\emptyset$, there there is no critical point, and the minimum is on the border. So do nothing.
- If $K(X) \subset X$, then iterate the K operator starting with $K(X)$ until the desired tolerance is reached.
- Use the last rectangle to set the lower and upper bounds on the minimum and end the algorithm.

A Daunting Matrix

Problem 3

Let A be the $20,000 \times 20,000$ matrix whose entries are zero everywhere except for the primes $2,3,5,7, \ldots, 224737$ along the main diagonal and the number 1 in all the positions $a_{i j}$ with $|i-j|=1,2,4,8, \ldots, 16384$. What is the $(1,1)$ entry of A^{-1} ?

Difficulties

- Inverting a matrix takes forever and is prone to error.
- Computing resources are limited, can't use techniques like Cramer's rule.
- Need to find properties that make this problem solvable!

The Approach

- $A \mathbf{x}=\mathbf{b}$ with $\mathbf{b}=(1,0,0, \ldots, 0)^{T}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$.

$$
A^{-1}=\left(\begin{array}{c|ccc}
x_{1} & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} & * & \cdots & *
\end{array}\right)
$$

- What we want to find is the value of x_{1}.
- Symmetric.
- Positive-definite \Rightarrow there exists a nonsingular matrix M such that $A=M M^{T}$.

Quadratic Forms

Definition

If A is a matrix, \mathbf{b} is a vector, and $c \in \mathbb{R}$ then the quadratic form is a scalar, quadratic function

$$
f(\mathbf{x}):=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{b}^{T} \mathbf{x}+c
$$

Quadratic Forms

Theorem

If A is a symmetric positive definite matrix, the solution to $A \mathbf{x}=\mathbf{b}$ is a critical point of $f(\mathbf{x})$. In fact, \mathbf{x} is equal to the global minimum of $f(\mathbf{x})$.

Steepest Descent Method

Start at an arbitrary point \mathbf{x}_{0} and slide down to the bottom of the paraboloid defined by $f(\mathbf{x})$. We take a series of steps
$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ until we come within a reasonable distance from the true solution \mathbf{x}. Each step is proportional the negative of the gradient at \mathbf{x}_{i}.

The Method of Conjugate Directions

Choose the search directions so we don't take the same step more than once.

Definition

We say that two vectors \mathbf{d}_{i} and $\mathbf{d}_{j}, i \neq j$, are A-orthogonal or conjugate if

$$
\mathbf{d}_{i}^{T} A \mathbf{d}_{j}=0 .
$$

Theorem

The method of Conjugate Directions converges in n steps.

Conjugate Gram-Schmidt Process

Generate conjugate directions from a set of n linearly independent vectors $\mathbf{u}_{0}, \mathbf{u}_{1, \ldots}, \mathbf{u}_{n-1}$ by subtracting out any components that are not A-orthogonal.

Conjugate Gradient Method

- Let the set of linearly independent vectors be residuals: $\mathbf{r}_{i}=A-\mathbf{b x}{ }_{i}$.
- Reduces the time and space complexity from $O\left(n^{2}\right)$ to $O(m)$ where m is the number of non-zero entries in the matrix A.

Preconditioned Conjugate Gradient Method

Definition

The spectral condition number is

$$
\kappa(A)=\lambda_{\max }(A) / \lambda_{\min }(A) .
$$

An ill-conditioned matrix is one in which the condition number is large.

- We want to find a matrix M such that $\kappa\left(M^{-1} A\right) \approx 1$. Thus we can apply the CG method to the system

$$
M^{-1} A \mathbf{x}=M^{-1} \mathbf{b}
$$

- We use the matrix of the diagonal entries of A.

